| Step |
Hyp |
Ref |
Expression |
| 1 |
|
orc |
|- ( -. ph -> ( -. ph \/ ps ) ) |
| 2 |
|
olc |
|- ( ps -> ( -. ph \/ ps ) ) |
| 3 |
1 2
|
ja |
|- ( ( ph -> ps ) -> ( -. ph \/ ps ) ) |
| 4 |
3
|
imim1i |
|- ( ( ( -. ph \/ ps ) -> ( ch \/ ( th \/ ta ) ) ) -> ( ( ph -> ps ) -> ( ch \/ ( th \/ ta ) ) ) ) |
| 5 |
|
pm2.24 |
|- ( th -> ( -. th -> ph ) ) |
| 6 |
|
idd |
|- ( th -> ( ph -> ph ) ) |
| 7 |
5 6
|
jaod |
|- ( th -> ( ( -. th \/ ph ) -> ph ) ) |
| 8 |
7
|
com12 |
|- ( ( -. th \/ ph ) -> ( th -> ph ) ) |
| 9 |
|
pm1.5 |
|- ( ( -. ( ph -> ps ) \/ ( ch \/ ( th \/ ta ) ) ) -> ( ch \/ ( -. ( ph -> ps ) \/ ( th \/ ta ) ) ) ) |
| 10 |
|
pm2.3 |
|- ( ( -. ( ph -> ps ) \/ ( th \/ ta ) ) -> ( -. ( ph -> ps ) \/ ( ta \/ th ) ) ) |
| 11 |
|
pm1.5 |
|- ( ( -. ( ph -> ps ) \/ ( ta \/ th ) ) -> ( ta \/ ( -. ( ph -> ps ) \/ th ) ) ) |
| 12 |
|
pm2.21 |
|- ( -. ph -> ( ph -> ps ) ) |
| 13 |
|
jcn |
|- ( th -> ( -. ph -> -. ( th -> ph ) ) ) |
| 14 |
12 13
|
imim12i |
|- ( ( ( ph -> ps ) -> th ) -> ( -. ph -> ( -. ph -> -. ( th -> ph ) ) ) ) |
| 15 |
14
|
pm2.43d |
|- ( ( ( ph -> ps ) -> th ) -> ( -. ph -> -. ( th -> ph ) ) ) |
| 16 |
15
|
con4d |
|- ( ( ( ph -> ps ) -> th ) -> ( ( th -> ph ) -> ph ) ) |
| 17 |
|
imor |
|- ( ( ( ph -> ps ) -> th ) <-> ( -. ( ph -> ps ) \/ th ) ) |
| 18 |
|
imor |
|- ( ( ( th -> ph ) -> ph ) <-> ( -. ( th -> ph ) \/ ph ) ) |
| 19 |
16 17 18
|
3imtr3i |
|- ( ( -. ( ph -> ps ) \/ th ) -> ( -. ( th -> ph ) \/ ph ) ) |
| 20 |
19
|
orim2i |
|- ( ( ta \/ ( -. ( ph -> ps ) \/ th ) ) -> ( ta \/ ( -. ( th -> ph ) \/ ph ) ) ) |
| 21 |
|
pm1.5 |
|- ( ( ta \/ ( -. ( th -> ph ) \/ ph ) ) -> ( -. ( th -> ph ) \/ ( ta \/ ph ) ) ) |
| 22 |
10 11 20 21
|
4syl |
|- ( ( -. ( ph -> ps ) \/ ( th \/ ta ) ) -> ( -. ( th -> ph ) \/ ( ta \/ ph ) ) ) |
| 23 |
22
|
orim2i |
|- ( ( ch \/ ( -. ( ph -> ps ) \/ ( th \/ ta ) ) ) -> ( ch \/ ( -. ( th -> ph ) \/ ( ta \/ ph ) ) ) ) |
| 24 |
|
pm1.5 |
|- ( ( ch \/ ( -. ( th -> ph ) \/ ( ta \/ ph ) ) ) -> ( -. ( th -> ph ) \/ ( ch \/ ( ta \/ ph ) ) ) ) |
| 25 |
9 23 24
|
3syl |
|- ( ( -. ( ph -> ps ) \/ ( ch \/ ( th \/ ta ) ) ) -> ( -. ( th -> ph ) \/ ( ch \/ ( ta \/ ph ) ) ) ) |
| 26 |
|
imor |
|- ( ( ( ph -> ps ) -> ( ch \/ ( th \/ ta ) ) ) <-> ( -. ( ph -> ps ) \/ ( ch \/ ( th \/ ta ) ) ) ) |
| 27 |
|
imor |
|- ( ( ( th -> ph ) -> ( ch \/ ( ta \/ ph ) ) ) <-> ( -. ( th -> ph ) \/ ( ch \/ ( ta \/ ph ) ) ) ) |
| 28 |
25 26 27
|
3imtr4i |
|- ( ( ( ph -> ps ) -> ( ch \/ ( th \/ ta ) ) ) -> ( ( th -> ph ) -> ( ch \/ ( ta \/ ph ) ) ) ) |
| 29 |
4 8 28
|
syl2im |
|- ( ( ( -. ph \/ ps ) -> ( ch \/ ( th \/ ta ) ) ) -> ( ( -. th \/ ph ) -> ( ch \/ ( ta \/ ph ) ) ) ) |
| 30 |
|
imor |
|- ( ( ( -. ph \/ ps ) -> ( ch \/ ( th \/ ta ) ) ) <-> ( -. ( -. ph \/ ps ) \/ ( ch \/ ( th \/ ta ) ) ) ) |
| 31 |
|
imor |
|- ( ( ( -. th \/ ph ) -> ( ch \/ ( ta \/ ph ) ) ) <-> ( -. ( -. th \/ ph ) \/ ( ch \/ ( ta \/ ph ) ) ) ) |
| 32 |
29 30 31
|
3imtr3i |
|- ( ( -. ( -. ph \/ ps ) \/ ( ch \/ ( th \/ ta ) ) ) -> ( -. ( -. th \/ ph ) \/ ( ch \/ ( ta \/ ph ) ) ) ) |
| 33 |
32
|
imori |
|- ( -. ( -. ( -. ph \/ ps ) \/ ( ch \/ ( th \/ ta ) ) ) \/ ( -. ( -. th \/ ph ) \/ ( ch \/ ( ta \/ ph ) ) ) ) |