Step |
Hyp |
Ref |
Expression |
1 |
|
orc |
|- ( -. ph -> ( -. ph \/ ps ) ) |
2 |
|
olc |
|- ( ps -> ( -. ph \/ ps ) ) |
3 |
1 2
|
ja |
|- ( ( ph -> ps ) -> ( -. ph \/ ps ) ) |
4 |
3
|
imim1i |
|- ( ( ( -. ph \/ ps ) -> ( ch \/ ( th \/ ta ) ) ) -> ( ( ph -> ps ) -> ( ch \/ ( th \/ ta ) ) ) ) |
5 |
|
pm2.24 |
|- ( th -> ( -. th -> ph ) ) |
6 |
|
idd |
|- ( th -> ( ph -> ph ) ) |
7 |
5 6
|
jaod |
|- ( th -> ( ( -. th \/ ph ) -> ph ) ) |
8 |
7
|
com12 |
|- ( ( -. th \/ ph ) -> ( th -> ph ) ) |
9 |
|
pm1.5 |
|- ( ( -. ( ph -> ps ) \/ ( ch \/ ( th \/ ta ) ) ) -> ( ch \/ ( -. ( ph -> ps ) \/ ( th \/ ta ) ) ) ) |
10 |
|
pm2.3 |
|- ( ( -. ( ph -> ps ) \/ ( th \/ ta ) ) -> ( -. ( ph -> ps ) \/ ( ta \/ th ) ) ) |
11 |
|
pm1.5 |
|- ( ( -. ( ph -> ps ) \/ ( ta \/ th ) ) -> ( ta \/ ( -. ( ph -> ps ) \/ th ) ) ) |
12 |
|
pm2.21 |
|- ( -. ph -> ( ph -> ps ) ) |
13 |
|
jcn |
|- ( th -> ( -. ph -> -. ( th -> ph ) ) ) |
14 |
12 13
|
imim12i |
|- ( ( ( ph -> ps ) -> th ) -> ( -. ph -> ( -. ph -> -. ( th -> ph ) ) ) ) |
15 |
14
|
pm2.43d |
|- ( ( ( ph -> ps ) -> th ) -> ( -. ph -> -. ( th -> ph ) ) ) |
16 |
15
|
con4d |
|- ( ( ( ph -> ps ) -> th ) -> ( ( th -> ph ) -> ph ) ) |
17 |
|
imor |
|- ( ( ( ph -> ps ) -> th ) <-> ( -. ( ph -> ps ) \/ th ) ) |
18 |
|
imor |
|- ( ( ( th -> ph ) -> ph ) <-> ( -. ( th -> ph ) \/ ph ) ) |
19 |
16 17 18
|
3imtr3i |
|- ( ( -. ( ph -> ps ) \/ th ) -> ( -. ( th -> ph ) \/ ph ) ) |
20 |
19
|
orim2i |
|- ( ( ta \/ ( -. ( ph -> ps ) \/ th ) ) -> ( ta \/ ( -. ( th -> ph ) \/ ph ) ) ) |
21 |
|
pm1.5 |
|- ( ( ta \/ ( -. ( th -> ph ) \/ ph ) ) -> ( -. ( th -> ph ) \/ ( ta \/ ph ) ) ) |
22 |
10 11 20 21
|
4syl |
|- ( ( -. ( ph -> ps ) \/ ( th \/ ta ) ) -> ( -. ( th -> ph ) \/ ( ta \/ ph ) ) ) |
23 |
22
|
orim2i |
|- ( ( ch \/ ( -. ( ph -> ps ) \/ ( th \/ ta ) ) ) -> ( ch \/ ( -. ( th -> ph ) \/ ( ta \/ ph ) ) ) ) |
24 |
|
pm1.5 |
|- ( ( ch \/ ( -. ( th -> ph ) \/ ( ta \/ ph ) ) ) -> ( -. ( th -> ph ) \/ ( ch \/ ( ta \/ ph ) ) ) ) |
25 |
9 23 24
|
3syl |
|- ( ( -. ( ph -> ps ) \/ ( ch \/ ( th \/ ta ) ) ) -> ( -. ( th -> ph ) \/ ( ch \/ ( ta \/ ph ) ) ) ) |
26 |
|
imor |
|- ( ( ( ph -> ps ) -> ( ch \/ ( th \/ ta ) ) ) <-> ( -. ( ph -> ps ) \/ ( ch \/ ( th \/ ta ) ) ) ) |
27 |
|
imor |
|- ( ( ( th -> ph ) -> ( ch \/ ( ta \/ ph ) ) ) <-> ( -. ( th -> ph ) \/ ( ch \/ ( ta \/ ph ) ) ) ) |
28 |
25 26 27
|
3imtr4i |
|- ( ( ( ph -> ps ) -> ( ch \/ ( th \/ ta ) ) ) -> ( ( th -> ph ) -> ( ch \/ ( ta \/ ph ) ) ) ) |
29 |
4 8 28
|
syl2im |
|- ( ( ( -. ph \/ ps ) -> ( ch \/ ( th \/ ta ) ) ) -> ( ( -. th \/ ph ) -> ( ch \/ ( ta \/ ph ) ) ) ) |
30 |
|
imor |
|- ( ( ( -. ph \/ ps ) -> ( ch \/ ( th \/ ta ) ) ) <-> ( -. ( -. ph \/ ps ) \/ ( ch \/ ( th \/ ta ) ) ) ) |
31 |
|
imor |
|- ( ( ( -. th \/ ph ) -> ( ch \/ ( ta \/ ph ) ) ) <-> ( -. ( -. th \/ ph ) \/ ( ch \/ ( ta \/ ph ) ) ) ) |
32 |
29 30 31
|
3imtr3i |
|- ( ( -. ( -. ph \/ ps ) \/ ( ch \/ ( th \/ ta ) ) ) -> ( -. ( -. th \/ ph ) \/ ( ch \/ ( ta \/ ph ) ) ) ) |
33 |
32
|
imori |
|- ( -. ( -. ( -. ph \/ ps ) \/ ( ch \/ ( th \/ ta ) ) ) \/ ( -. ( -. th \/ ph ) \/ ( ch \/ ( ta \/ ph ) ) ) ) |