Metamath Proof Explorer


Theorem meran1

Description: A single axiom for propositional calculus discovered by C. A. Meredith. (Contributed by Anthony Hart, 13-Aug-2011)

Ref Expression
Assertion meran1 ¬¬¬φψχθτ¬¬θφχτφ

Proof

Step Hyp Ref Expression
1 orc ¬φ¬φψ
2 olc ψ¬φψ
3 1 2 ja φψ¬φψ
4 3 imim1i ¬φψχθτφψχθτ
5 pm2.24 θ¬θφ
6 idd θφφ
7 5 6 jaod θ¬θφφ
8 7 com12 ¬θφθφ
9 pm1.5 ¬φψχθτχ¬φψθτ
10 pm2.3 ¬φψθτ¬φψτθ
11 pm1.5 ¬φψτθτ¬φψθ
12 pm2.21 ¬φφψ
13 jcn θ¬φ¬θφ
14 12 13 imim12i φψθ¬φ¬φ¬θφ
15 14 pm2.43d φψθ¬φ¬θφ
16 15 con4d φψθθφφ
17 imor φψθ¬φψθ
18 imor θφφ¬θφφ
19 16 17 18 3imtr3i ¬φψθ¬θφφ
20 19 orim2i τ¬φψθτ¬θφφ
21 pm1.5 τ¬θφφ¬θφτφ
22 10 11 20 21 4syl ¬φψθτ¬θφτφ
23 22 orim2i χ¬φψθτχ¬θφτφ
24 pm1.5 χ¬θφτφ¬θφχτφ
25 9 23 24 3syl ¬φψχθτ¬θφχτφ
26 imor φψχθτ¬φψχθτ
27 imor θφχτφ¬θφχτφ
28 25 26 27 3imtr4i φψχθτθφχτφ
29 4 8 28 syl2im ¬φψχθτ¬θφχτφ
30 imor ¬φψχθτ¬¬φψχθτ
31 imor ¬θφχτφ¬¬θφχτφ
32 29 30 31 3imtr3i ¬¬φψχθτ¬¬θφχτφ
33 32 imori ¬¬¬φψχθτ¬¬θφχτφ