Metamath Proof Explorer


Theorem metakunt18

Description: Disjoint domains and codomains. (Contributed by metakunt, 28-May-2024)

Ref Expression
Hypotheses metakunt18.1 ( 𝜑𝑀 ∈ ℕ )
metakunt18.2 ( 𝜑𝐼 ∈ ℕ )
metakunt18.3 ( 𝜑𝐼𝑀 )
Assertion metakunt18 ( 𝜑 → ( ( ( ( 1 ... ( 𝐼 − 1 ) ) ∩ ( 𝐼 ... ( 𝑀 − 1 ) ) ) = ∅ ∧ ( ( 1 ... ( 𝐼 − 1 ) ) ∩ { 𝑀 } ) = ∅ ∧ ( ( 𝐼 ... ( 𝑀 − 1 ) ) ∩ { 𝑀 } ) = ∅ ) ∧ ( ( ( ( ( 𝑀𝐼 ) + 1 ) ... ( 𝑀 − 1 ) ) ∩ ( 1 ... ( 𝑀𝐼 ) ) ) = ∅ ∧ ( ( ( ( 𝑀𝐼 ) + 1 ) ... ( 𝑀 − 1 ) ) ∩ { 𝑀 } ) = ∅ ∧ ( ( 1 ... ( 𝑀𝐼 ) ) ∩ { 𝑀 } ) = ∅ ) ) )

Proof

Step Hyp Ref Expression
1 metakunt18.1 ( 𝜑𝑀 ∈ ℕ )
2 metakunt18.2 ( 𝜑𝐼 ∈ ℕ )
3 metakunt18.3 ( 𝜑𝐼𝑀 )
4 2 nnred ( 𝜑𝐼 ∈ ℝ )
5 4 ltm1d ( 𝜑 → ( 𝐼 − 1 ) < 𝐼 )
6 fzdisj ( ( 𝐼 − 1 ) < 𝐼 → ( ( 1 ... ( 𝐼 − 1 ) ) ∩ ( 𝐼 ... ( 𝑀 − 1 ) ) ) = ∅ )
7 5 6 syl ( 𝜑 → ( ( 1 ... ( 𝐼 − 1 ) ) ∩ ( 𝐼 ... ( 𝑀 − 1 ) ) ) = ∅ )
8 1 nnzd ( 𝜑𝑀 ∈ ℤ )
9 fzsn ( 𝑀 ∈ ℤ → ( 𝑀 ... 𝑀 ) = { 𝑀 } )
10 8 9 syl ( 𝜑 → ( 𝑀 ... 𝑀 ) = { 𝑀 } )
11 10 eqcomd ( 𝜑 → { 𝑀 } = ( 𝑀 ... 𝑀 ) )
12 11 ineq2d ( 𝜑 → ( ( 1 ... ( 𝐼 − 1 ) ) ∩ { 𝑀 } ) = ( ( 1 ... ( 𝐼 − 1 ) ) ∩ ( 𝑀 ... 𝑀 ) ) )
13 2 nnzd ( 𝜑𝐼 ∈ ℤ )
14 zlem1lt ( ( 𝐼 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝐼𝑀 ↔ ( 𝐼 − 1 ) < 𝑀 ) )
15 13 8 14 syl2anc ( 𝜑 → ( 𝐼𝑀 ↔ ( 𝐼 − 1 ) < 𝑀 ) )
16 3 15 mpbid ( 𝜑 → ( 𝐼 − 1 ) < 𝑀 )
17 fzdisj ( ( 𝐼 − 1 ) < 𝑀 → ( ( 1 ... ( 𝐼 − 1 ) ) ∩ ( 𝑀 ... 𝑀 ) ) = ∅ )
18 16 17 syl ( 𝜑 → ( ( 1 ... ( 𝐼 − 1 ) ) ∩ ( 𝑀 ... 𝑀 ) ) = ∅ )
19 12 18 eqtrd ( 𝜑 → ( ( 1 ... ( 𝐼 − 1 ) ) ∩ { 𝑀 } ) = ∅ )
20 11 ineq2d ( 𝜑 → ( ( 𝐼 ... ( 𝑀 − 1 ) ) ∩ { 𝑀 } ) = ( ( 𝐼 ... ( 𝑀 − 1 ) ) ∩ ( 𝑀 ... 𝑀 ) ) )
21 1 nnred ( 𝜑𝑀 ∈ ℝ )
22 21 ltm1d ( 𝜑 → ( 𝑀 − 1 ) < 𝑀 )
23 fzdisj ( ( 𝑀 − 1 ) < 𝑀 → ( ( 𝐼 ... ( 𝑀 − 1 ) ) ∩ ( 𝑀 ... 𝑀 ) ) = ∅ )
24 22 23 syl ( 𝜑 → ( ( 𝐼 ... ( 𝑀 − 1 ) ) ∩ ( 𝑀 ... 𝑀 ) ) = ∅ )
25 20 24 eqtrd ( 𝜑 → ( ( 𝐼 ... ( 𝑀 − 1 ) ) ∩ { 𝑀 } ) = ∅ )
26 7 19 25 3jca ( 𝜑 → ( ( ( 1 ... ( 𝐼 − 1 ) ) ∩ ( 𝐼 ... ( 𝑀 − 1 ) ) ) = ∅ ∧ ( ( 1 ... ( 𝐼 − 1 ) ) ∩ { 𝑀 } ) = ∅ ∧ ( ( 𝐼 ... ( 𝑀 − 1 ) ) ∩ { 𝑀 } ) = ∅ ) )
27 incom ( ( ( ( 𝑀𝐼 ) + 1 ) ... ( 𝑀 − 1 ) ) ∩ ( 1 ... ( 𝑀𝐼 ) ) ) = ( ( 1 ... ( 𝑀𝐼 ) ) ∩ ( ( ( 𝑀𝐼 ) + 1 ) ... ( 𝑀 − 1 ) ) )
28 27 a1i ( 𝜑 → ( ( ( ( 𝑀𝐼 ) + 1 ) ... ( 𝑀 − 1 ) ) ∩ ( 1 ... ( 𝑀𝐼 ) ) ) = ( ( 1 ... ( 𝑀𝐼 ) ) ∩ ( ( ( 𝑀𝐼 ) + 1 ) ... ( 𝑀 − 1 ) ) ) )
29 21 4 resubcld ( 𝜑 → ( 𝑀𝐼 ) ∈ ℝ )
30 29 ltp1d ( 𝜑 → ( 𝑀𝐼 ) < ( ( 𝑀𝐼 ) + 1 ) )
31 fzdisj ( ( 𝑀𝐼 ) < ( ( 𝑀𝐼 ) + 1 ) → ( ( 1 ... ( 𝑀𝐼 ) ) ∩ ( ( ( 𝑀𝐼 ) + 1 ) ... ( 𝑀 − 1 ) ) ) = ∅ )
32 30 31 syl ( 𝜑 → ( ( 1 ... ( 𝑀𝐼 ) ) ∩ ( ( ( 𝑀𝐼 ) + 1 ) ... ( 𝑀 − 1 ) ) ) = ∅ )
33 28 32 eqtrd ( 𝜑 → ( ( ( ( 𝑀𝐼 ) + 1 ) ... ( 𝑀 − 1 ) ) ∩ ( 1 ... ( 𝑀𝐼 ) ) ) = ∅ )
34 11 ineq2d ( 𝜑 → ( ( ( ( 𝑀𝐼 ) + 1 ) ... ( 𝑀 − 1 ) ) ∩ { 𝑀 } ) = ( ( ( ( 𝑀𝐼 ) + 1 ) ... ( 𝑀 − 1 ) ) ∩ ( 𝑀 ... 𝑀 ) ) )
35 fzdisj ( ( 𝑀 − 1 ) < 𝑀 → ( ( ( ( 𝑀𝐼 ) + 1 ) ... ( 𝑀 − 1 ) ) ∩ ( 𝑀 ... 𝑀 ) ) = ∅ )
36 22 35 syl ( 𝜑 → ( ( ( ( 𝑀𝐼 ) + 1 ) ... ( 𝑀 − 1 ) ) ∩ ( 𝑀 ... 𝑀 ) ) = ∅ )
37 34 36 eqtrd ( 𝜑 → ( ( ( ( 𝑀𝐼 ) + 1 ) ... ( 𝑀 − 1 ) ) ∩ { 𝑀 } ) = ∅ )
38 11 ineq2d ( 𝜑 → ( ( 1 ... ( 𝑀𝐼 ) ) ∩ { 𝑀 } ) = ( ( 1 ... ( 𝑀𝐼 ) ) ∩ ( 𝑀 ... 𝑀 ) ) )
39 2 nnrpd ( 𝜑𝐼 ∈ ℝ+ )
40 21 39 ltsubrpd ( 𝜑 → ( 𝑀𝐼 ) < 𝑀 )
41 fzdisj ( ( 𝑀𝐼 ) < 𝑀 → ( ( 1 ... ( 𝑀𝐼 ) ) ∩ ( 𝑀 ... 𝑀 ) ) = ∅ )
42 40 41 syl ( 𝜑 → ( ( 1 ... ( 𝑀𝐼 ) ) ∩ ( 𝑀 ... 𝑀 ) ) = ∅ )
43 38 42 eqtrd ( 𝜑 → ( ( 1 ... ( 𝑀𝐼 ) ) ∩ { 𝑀 } ) = ∅ )
44 33 37 43 3jca ( 𝜑 → ( ( ( ( ( 𝑀𝐼 ) + 1 ) ... ( 𝑀 − 1 ) ) ∩ ( 1 ... ( 𝑀𝐼 ) ) ) = ∅ ∧ ( ( ( ( 𝑀𝐼 ) + 1 ) ... ( 𝑀 − 1 ) ) ∩ { 𝑀 } ) = ∅ ∧ ( ( 1 ... ( 𝑀𝐼 ) ) ∩ { 𝑀 } ) = ∅ ) )
45 26 44 jca ( 𝜑 → ( ( ( ( 1 ... ( 𝐼 − 1 ) ) ∩ ( 𝐼 ... ( 𝑀 − 1 ) ) ) = ∅ ∧ ( ( 1 ... ( 𝐼 − 1 ) ) ∩ { 𝑀 } ) = ∅ ∧ ( ( 𝐼 ... ( 𝑀 − 1 ) ) ∩ { 𝑀 } ) = ∅ ) ∧ ( ( ( ( ( 𝑀𝐼 ) + 1 ) ... ( 𝑀 − 1 ) ) ∩ ( 1 ... ( 𝑀𝐼 ) ) ) = ∅ ∧ ( ( ( ( 𝑀𝐼 ) + 1 ) ... ( 𝑀 − 1 ) ) ∩ { 𝑀 } ) = ∅ ∧ ( ( 1 ... ( 𝑀𝐼 ) ) ∩ { 𝑀 } ) = ∅ ) ) )