Step |
Hyp |
Ref |
Expression |
1 |
|
metakunt18.1 |
|- ( ph -> M e. NN ) |
2 |
|
metakunt18.2 |
|- ( ph -> I e. NN ) |
3 |
|
metakunt18.3 |
|- ( ph -> I <_ M ) |
4 |
2
|
nnred |
|- ( ph -> I e. RR ) |
5 |
4
|
ltm1d |
|- ( ph -> ( I - 1 ) < I ) |
6 |
|
fzdisj |
|- ( ( I - 1 ) < I -> ( ( 1 ... ( I - 1 ) ) i^i ( I ... ( M - 1 ) ) ) = (/) ) |
7 |
5 6
|
syl |
|- ( ph -> ( ( 1 ... ( I - 1 ) ) i^i ( I ... ( M - 1 ) ) ) = (/) ) |
8 |
1
|
nnzd |
|- ( ph -> M e. ZZ ) |
9 |
|
fzsn |
|- ( M e. ZZ -> ( M ... M ) = { M } ) |
10 |
8 9
|
syl |
|- ( ph -> ( M ... M ) = { M } ) |
11 |
10
|
eqcomd |
|- ( ph -> { M } = ( M ... M ) ) |
12 |
11
|
ineq2d |
|- ( ph -> ( ( 1 ... ( I - 1 ) ) i^i { M } ) = ( ( 1 ... ( I - 1 ) ) i^i ( M ... M ) ) ) |
13 |
2
|
nnzd |
|- ( ph -> I e. ZZ ) |
14 |
|
zlem1lt |
|- ( ( I e. ZZ /\ M e. ZZ ) -> ( I <_ M <-> ( I - 1 ) < M ) ) |
15 |
13 8 14
|
syl2anc |
|- ( ph -> ( I <_ M <-> ( I - 1 ) < M ) ) |
16 |
3 15
|
mpbid |
|- ( ph -> ( I - 1 ) < M ) |
17 |
|
fzdisj |
|- ( ( I - 1 ) < M -> ( ( 1 ... ( I - 1 ) ) i^i ( M ... M ) ) = (/) ) |
18 |
16 17
|
syl |
|- ( ph -> ( ( 1 ... ( I - 1 ) ) i^i ( M ... M ) ) = (/) ) |
19 |
12 18
|
eqtrd |
|- ( ph -> ( ( 1 ... ( I - 1 ) ) i^i { M } ) = (/) ) |
20 |
11
|
ineq2d |
|- ( ph -> ( ( I ... ( M - 1 ) ) i^i { M } ) = ( ( I ... ( M - 1 ) ) i^i ( M ... M ) ) ) |
21 |
1
|
nnred |
|- ( ph -> M e. RR ) |
22 |
21
|
ltm1d |
|- ( ph -> ( M - 1 ) < M ) |
23 |
|
fzdisj |
|- ( ( M - 1 ) < M -> ( ( I ... ( M - 1 ) ) i^i ( M ... M ) ) = (/) ) |
24 |
22 23
|
syl |
|- ( ph -> ( ( I ... ( M - 1 ) ) i^i ( M ... M ) ) = (/) ) |
25 |
20 24
|
eqtrd |
|- ( ph -> ( ( I ... ( M - 1 ) ) i^i { M } ) = (/) ) |
26 |
7 19 25
|
3jca |
|- ( ph -> ( ( ( 1 ... ( I - 1 ) ) i^i ( I ... ( M - 1 ) ) ) = (/) /\ ( ( 1 ... ( I - 1 ) ) i^i { M } ) = (/) /\ ( ( I ... ( M - 1 ) ) i^i { M } ) = (/) ) ) |
27 |
|
incom |
|- ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) i^i ( 1 ... ( M - I ) ) ) = ( ( 1 ... ( M - I ) ) i^i ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) |
28 |
27
|
a1i |
|- ( ph -> ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) i^i ( 1 ... ( M - I ) ) ) = ( ( 1 ... ( M - I ) ) i^i ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) ) |
29 |
21 4
|
resubcld |
|- ( ph -> ( M - I ) e. RR ) |
30 |
29
|
ltp1d |
|- ( ph -> ( M - I ) < ( ( M - I ) + 1 ) ) |
31 |
|
fzdisj |
|- ( ( M - I ) < ( ( M - I ) + 1 ) -> ( ( 1 ... ( M - I ) ) i^i ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) = (/) ) |
32 |
30 31
|
syl |
|- ( ph -> ( ( 1 ... ( M - I ) ) i^i ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) = (/) ) |
33 |
28 32
|
eqtrd |
|- ( ph -> ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) i^i ( 1 ... ( M - I ) ) ) = (/) ) |
34 |
11
|
ineq2d |
|- ( ph -> ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) i^i { M } ) = ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) i^i ( M ... M ) ) ) |
35 |
|
fzdisj |
|- ( ( M - 1 ) < M -> ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) i^i ( M ... M ) ) = (/) ) |
36 |
22 35
|
syl |
|- ( ph -> ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) i^i ( M ... M ) ) = (/) ) |
37 |
34 36
|
eqtrd |
|- ( ph -> ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) i^i { M } ) = (/) ) |
38 |
11
|
ineq2d |
|- ( ph -> ( ( 1 ... ( M - I ) ) i^i { M } ) = ( ( 1 ... ( M - I ) ) i^i ( M ... M ) ) ) |
39 |
2
|
nnrpd |
|- ( ph -> I e. RR+ ) |
40 |
21 39
|
ltsubrpd |
|- ( ph -> ( M - I ) < M ) |
41 |
|
fzdisj |
|- ( ( M - I ) < M -> ( ( 1 ... ( M - I ) ) i^i ( M ... M ) ) = (/) ) |
42 |
40 41
|
syl |
|- ( ph -> ( ( 1 ... ( M - I ) ) i^i ( M ... M ) ) = (/) ) |
43 |
38 42
|
eqtrd |
|- ( ph -> ( ( 1 ... ( M - I ) ) i^i { M } ) = (/) ) |
44 |
33 37 43
|
3jca |
|- ( ph -> ( ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) i^i ( 1 ... ( M - I ) ) ) = (/) /\ ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) i^i { M } ) = (/) /\ ( ( 1 ... ( M - I ) ) i^i { M } ) = (/) ) ) |
45 |
26 44
|
jca |
|- ( ph -> ( ( ( ( 1 ... ( I - 1 ) ) i^i ( I ... ( M - 1 ) ) ) = (/) /\ ( ( 1 ... ( I - 1 ) ) i^i { M } ) = (/) /\ ( ( I ... ( M - 1 ) ) i^i { M } ) = (/) ) /\ ( ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) i^i ( 1 ... ( M - I ) ) ) = (/) /\ ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) i^i { M } ) = (/) /\ ( ( 1 ... ( M - I ) ) i^i { M } ) = (/) ) ) ) |