| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt18.1 |  |-  ( ph -> M e. NN ) | 
						
							| 2 |  | metakunt18.2 |  |-  ( ph -> I e. NN ) | 
						
							| 3 |  | metakunt18.3 |  |-  ( ph -> I <_ M ) | 
						
							| 4 | 2 | nnred |  |-  ( ph -> I e. RR ) | 
						
							| 5 | 4 | ltm1d |  |-  ( ph -> ( I - 1 ) < I ) | 
						
							| 6 |  | fzdisj |  |-  ( ( I - 1 ) < I -> ( ( 1 ... ( I - 1 ) ) i^i ( I ... ( M - 1 ) ) ) = (/) ) | 
						
							| 7 | 5 6 | syl |  |-  ( ph -> ( ( 1 ... ( I - 1 ) ) i^i ( I ... ( M - 1 ) ) ) = (/) ) | 
						
							| 8 | 1 | nnzd |  |-  ( ph -> M e. ZZ ) | 
						
							| 9 |  | fzsn |  |-  ( M e. ZZ -> ( M ... M ) = { M } ) | 
						
							| 10 | 8 9 | syl |  |-  ( ph -> ( M ... M ) = { M } ) | 
						
							| 11 | 10 | eqcomd |  |-  ( ph -> { M } = ( M ... M ) ) | 
						
							| 12 | 11 | ineq2d |  |-  ( ph -> ( ( 1 ... ( I - 1 ) ) i^i { M } ) = ( ( 1 ... ( I - 1 ) ) i^i ( M ... M ) ) ) | 
						
							| 13 | 2 | nnzd |  |-  ( ph -> I e. ZZ ) | 
						
							| 14 |  | zlem1lt |  |-  ( ( I e. ZZ /\ M e. ZZ ) -> ( I <_ M <-> ( I - 1 ) < M ) ) | 
						
							| 15 | 13 8 14 | syl2anc |  |-  ( ph -> ( I <_ M <-> ( I - 1 ) < M ) ) | 
						
							| 16 | 3 15 | mpbid |  |-  ( ph -> ( I - 1 ) < M ) | 
						
							| 17 |  | fzdisj |  |-  ( ( I - 1 ) < M -> ( ( 1 ... ( I - 1 ) ) i^i ( M ... M ) ) = (/) ) | 
						
							| 18 | 16 17 | syl |  |-  ( ph -> ( ( 1 ... ( I - 1 ) ) i^i ( M ... M ) ) = (/) ) | 
						
							| 19 | 12 18 | eqtrd |  |-  ( ph -> ( ( 1 ... ( I - 1 ) ) i^i { M } ) = (/) ) | 
						
							| 20 | 11 | ineq2d |  |-  ( ph -> ( ( I ... ( M - 1 ) ) i^i { M } ) = ( ( I ... ( M - 1 ) ) i^i ( M ... M ) ) ) | 
						
							| 21 | 1 | nnred |  |-  ( ph -> M e. RR ) | 
						
							| 22 | 21 | ltm1d |  |-  ( ph -> ( M - 1 ) < M ) | 
						
							| 23 |  | fzdisj |  |-  ( ( M - 1 ) < M -> ( ( I ... ( M - 1 ) ) i^i ( M ... M ) ) = (/) ) | 
						
							| 24 | 22 23 | syl |  |-  ( ph -> ( ( I ... ( M - 1 ) ) i^i ( M ... M ) ) = (/) ) | 
						
							| 25 | 20 24 | eqtrd |  |-  ( ph -> ( ( I ... ( M - 1 ) ) i^i { M } ) = (/) ) | 
						
							| 26 | 7 19 25 | 3jca |  |-  ( ph -> ( ( ( 1 ... ( I - 1 ) ) i^i ( I ... ( M - 1 ) ) ) = (/) /\ ( ( 1 ... ( I - 1 ) ) i^i { M } ) = (/) /\ ( ( I ... ( M - 1 ) ) i^i { M } ) = (/) ) ) | 
						
							| 27 |  | incom |  |-  ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) i^i ( 1 ... ( M - I ) ) ) = ( ( 1 ... ( M - I ) ) i^i ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) | 
						
							| 28 | 27 | a1i |  |-  ( ph -> ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) i^i ( 1 ... ( M - I ) ) ) = ( ( 1 ... ( M - I ) ) i^i ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) ) | 
						
							| 29 | 21 4 | resubcld |  |-  ( ph -> ( M - I ) e. RR ) | 
						
							| 30 | 29 | ltp1d |  |-  ( ph -> ( M - I ) < ( ( M - I ) + 1 ) ) | 
						
							| 31 |  | fzdisj |  |-  ( ( M - I ) < ( ( M - I ) + 1 ) -> ( ( 1 ... ( M - I ) ) i^i ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) = (/) ) | 
						
							| 32 | 30 31 | syl |  |-  ( ph -> ( ( 1 ... ( M - I ) ) i^i ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) = (/) ) | 
						
							| 33 | 28 32 | eqtrd |  |-  ( ph -> ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) i^i ( 1 ... ( M - I ) ) ) = (/) ) | 
						
							| 34 | 11 | ineq2d |  |-  ( ph -> ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) i^i { M } ) = ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) i^i ( M ... M ) ) ) | 
						
							| 35 |  | fzdisj |  |-  ( ( M - 1 ) < M -> ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) i^i ( M ... M ) ) = (/) ) | 
						
							| 36 | 22 35 | syl |  |-  ( ph -> ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) i^i ( M ... M ) ) = (/) ) | 
						
							| 37 | 34 36 | eqtrd |  |-  ( ph -> ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) i^i { M } ) = (/) ) | 
						
							| 38 | 11 | ineq2d |  |-  ( ph -> ( ( 1 ... ( M - I ) ) i^i { M } ) = ( ( 1 ... ( M - I ) ) i^i ( M ... M ) ) ) | 
						
							| 39 | 2 | nnrpd |  |-  ( ph -> I e. RR+ ) | 
						
							| 40 | 21 39 | ltsubrpd |  |-  ( ph -> ( M - I ) < M ) | 
						
							| 41 |  | fzdisj |  |-  ( ( M - I ) < M -> ( ( 1 ... ( M - I ) ) i^i ( M ... M ) ) = (/) ) | 
						
							| 42 | 40 41 | syl |  |-  ( ph -> ( ( 1 ... ( M - I ) ) i^i ( M ... M ) ) = (/) ) | 
						
							| 43 | 38 42 | eqtrd |  |-  ( ph -> ( ( 1 ... ( M - I ) ) i^i { M } ) = (/) ) | 
						
							| 44 | 33 37 43 | 3jca |  |-  ( ph -> ( ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) i^i ( 1 ... ( M - I ) ) ) = (/) /\ ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) i^i { M } ) = (/) /\ ( ( 1 ... ( M - I ) ) i^i { M } ) = (/) ) ) | 
						
							| 45 | 26 44 | jca |  |-  ( ph -> ( ( ( ( 1 ... ( I - 1 ) ) i^i ( I ... ( M - 1 ) ) ) = (/) /\ ( ( 1 ... ( I - 1 ) ) i^i { M } ) = (/) /\ ( ( I ... ( M - 1 ) ) i^i { M } ) = (/) ) /\ ( ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) i^i ( 1 ... ( M - I ) ) ) = (/) /\ ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) i^i { M } ) = (/) /\ ( ( 1 ... ( M - I ) ) i^i { M } ) = (/) ) ) ) |