Step |
Hyp |
Ref |
Expression |
1 |
|
metakunt19.1 |
|- ( ph -> M e. NN ) |
2 |
|
metakunt19.2 |
|- ( ph -> I e. NN ) |
3 |
|
metakunt19.3 |
|- ( ph -> I <_ M ) |
4 |
|
metakunt19.4 |
|- B = ( x e. ( 1 ... M ) |-> if ( x = M , M , if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) ) ) |
5 |
|
metakunt19.5 |
|- C = ( x e. ( 1 ... ( I - 1 ) ) |-> ( x + ( M - I ) ) ) |
6 |
|
metakunt19.6 |
|- D = ( x e. ( I ... ( M - 1 ) ) |-> ( x + ( 1 - I ) ) ) |
7 |
|
elfzelz |
|- ( x e. ( 1 ... ( I - 1 ) ) -> x e. ZZ ) |
8 |
7
|
adantl |
|- ( ( ph /\ x e. ( 1 ... ( I - 1 ) ) ) -> x e. ZZ ) |
9 |
1
|
nnzd |
|- ( ph -> M e. ZZ ) |
10 |
9
|
adantr |
|- ( ( ph /\ x e. ( 1 ... ( I - 1 ) ) ) -> M e. ZZ ) |
11 |
2
|
nnzd |
|- ( ph -> I e. ZZ ) |
12 |
11
|
adantr |
|- ( ( ph /\ x e. ( 1 ... ( I - 1 ) ) ) -> I e. ZZ ) |
13 |
10 12
|
zsubcld |
|- ( ( ph /\ x e. ( 1 ... ( I - 1 ) ) ) -> ( M - I ) e. ZZ ) |
14 |
8 13
|
zaddcld |
|- ( ( ph /\ x e. ( 1 ... ( I - 1 ) ) ) -> ( x + ( M - I ) ) e. ZZ ) |
15 |
14 5
|
fmptd |
|- ( ph -> C : ( 1 ... ( I - 1 ) ) --> ZZ ) |
16 |
15
|
ffnd |
|- ( ph -> C Fn ( 1 ... ( I - 1 ) ) ) |
17 |
|
elfzelz |
|- ( x e. ( I ... ( M - 1 ) ) -> x e. ZZ ) |
18 |
17
|
adantl |
|- ( ( ph /\ x e. ( I ... ( M - 1 ) ) ) -> x e. ZZ ) |
19 |
|
1zzd |
|- ( ( ph /\ x e. ( I ... ( M - 1 ) ) ) -> 1 e. ZZ ) |
20 |
11
|
adantr |
|- ( ( ph /\ x e. ( I ... ( M - 1 ) ) ) -> I e. ZZ ) |
21 |
19 20
|
zsubcld |
|- ( ( ph /\ x e. ( I ... ( M - 1 ) ) ) -> ( 1 - I ) e. ZZ ) |
22 |
18 21
|
zaddcld |
|- ( ( ph /\ x e. ( I ... ( M - 1 ) ) ) -> ( x + ( 1 - I ) ) e. ZZ ) |
23 |
22 6
|
fmptd |
|- ( ph -> D : ( I ... ( M - 1 ) ) --> ZZ ) |
24 |
23
|
ffnd |
|- ( ph -> D Fn ( I ... ( M - 1 ) ) ) |
25 |
1 2 3
|
metakunt18 |
|- ( ph -> ( ( ( ( 1 ... ( I - 1 ) ) i^i ( I ... ( M - 1 ) ) ) = (/) /\ ( ( 1 ... ( I - 1 ) ) i^i { M } ) = (/) /\ ( ( I ... ( M - 1 ) ) i^i { M } ) = (/) ) /\ ( ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) i^i ( 1 ... ( M - I ) ) ) = (/) /\ ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) i^i { M } ) = (/) /\ ( ( 1 ... ( M - I ) ) i^i { M } ) = (/) ) ) ) |
26 |
25
|
simpld |
|- ( ph -> ( ( ( 1 ... ( I - 1 ) ) i^i ( I ... ( M - 1 ) ) ) = (/) /\ ( ( 1 ... ( I - 1 ) ) i^i { M } ) = (/) /\ ( ( I ... ( M - 1 ) ) i^i { M } ) = (/) ) ) |
27 |
26
|
simp1d |
|- ( ph -> ( ( 1 ... ( I - 1 ) ) i^i ( I ... ( M - 1 ) ) ) = (/) ) |
28 |
16 24 27
|
fnund |
|- ( ph -> ( C u. D ) Fn ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) ) |
29 |
16 24 28
|
3jca |
|- ( ph -> ( C Fn ( 1 ... ( I - 1 ) ) /\ D Fn ( I ... ( M - 1 ) ) /\ ( C u. D ) Fn ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) ) ) |
30 |
|
fnsng |
|- ( ( M e. NN /\ M e. NN ) -> { <. M , M >. } Fn { M } ) |
31 |
1 1 30
|
syl2anc |
|- ( ph -> { <. M , M >. } Fn { M } ) |
32 |
29 31
|
jca |
|- ( ph -> ( ( C Fn ( 1 ... ( I - 1 ) ) /\ D Fn ( I ... ( M - 1 ) ) /\ ( C u. D ) Fn ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) ) /\ { <. M , M >. } Fn { M } ) ) |