| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt19.1 |  |-  ( ph -> M e. NN ) | 
						
							| 2 |  | metakunt19.2 |  |-  ( ph -> I e. NN ) | 
						
							| 3 |  | metakunt19.3 |  |-  ( ph -> I <_ M ) | 
						
							| 4 |  | metakunt19.4 |  |-  B = ( x e. ( 1 ... M ) |-> if ( x = M , M , if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) ) ) | 
						
							| 5 |  | metakunt19.5 |  |-  C = ( x e. ( 1 ... ( I - 1 ) ) |-> ( x + ( M - I ) ) ) | 
						
							| 6 |  | metakunt19.6 |  |-  D = ( x e. ( I ... ( M - 1 ) ) |-> ( x + ( 1 - I ) ) ) | 
						
							| 7 |  | elfzelz |  |-  ( x e. ( 1 ... ( I - 1 ) ) -> x e. ZZ ) | 
						
							| 8 | 7 | adantl |  |-  ( ( ph /\ x e. ( 1 ... ( I - 1 ) ) ) -> x e. ZZ ) | 
						
							| 9 | 1 | nnzd |  |-  ( ph -> M e. ZZ ) | 
						
							| 10 | 9 | adantr |  |-  ( ( ph /\ x e. ( 1 ... ( I - 1 ) ) ) -> M e. ZZ ) | 
						
							| 11 | 2 | nnzd |  |-  ( ph -> I e. ZZ ) | 
						
							| 12 | 11 | adantr |  |-  ( ( ph /\ x e. ( 1 ... ( I - 1 ) ) ) -> I e. ZZ ) | 
						
							| 13 | 10 12 | zsubcld |  |-  ( ( ph /\ x e. ( 1 ... ( I - 1 ) ) ) -> ( M - I ) e. ZZ ) | 
						
							| 14 | 8 13 | zaddcld |  |-  ( ( ph /\ x e. ( 1 ... ( I - 1 ) ) ) -> ( x + ( M - I ) ) e. ZZ ) | 
						
							| 15 | 14 5 | fmptd |  |-  ( ph -> C : ( 1 ... ( I - 1 ) ) --> ZZ ) | 
						
							| 16 | 15 | ffnd |  |-  ( ph -> C Fn ( 1 ... ( I - 1 ) ) ) | 
						
							| 17 |  | elfzelz |  |-  ( x e. ( I ... ( M - 1 ) ) -> x e. ZZ ) | 
						
							| 18 | 17 | adantl |  |-  ( ( ph /\ x e. ( I ... ( M - 1 ) ) ) -> x e. ZZ ) | 
						
							| 19 |  | 1zzd |  |-  ( ( ph /\ x e. ( I ... ( M - 1 ) ) ) -> 1 e. ZZ ) | 
						
							| 20 | 11 | adantr |  |-  ( ( ph /\ x e. ( I ... ( M - 1 ) ) ) -> I e. ZZ ) | 
						
							| 21 | 19 20 | zsubcld |  |-  ( ( ph /\ x e. ( I ... ( M - 1 ) ) ) -> ( 1 - I ) e. ZZ ) | 
						
							| 22 | 18 21 | zaddcld |  |-  ( ( ph /\ x e. ( I ... ( M - 1 ) ) ) -> ( x + ( 1 - I ) ) e. ZZ ) | 
						
							| 23 | 22 6 | fmptd |  |-  ( ph -> D : ( I ... ( M - 1 ) ) --> ZZ ) | 
						
							| 24 | 23 | ffnd |  |-  ( ph -> D Fn ( I ... ( M - 1 ) ) ) | 
						
							| 25 | 1 2 3 | metakunt18 |  |-  ( ph -> ( ( ( ( 1 ... ( I - 1 ) ) i^i ( I ... ( M - 1 ) ) ) = (/) /\ ( ( 1 ... ( I - 1 ) ) i^i { M } ) = (/) /\ ( ( I ... ( M - 1 ) ) i^i { M } ) = (/) ) /\ ( ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) i^i ( 1 ... ( M - I ) ) ) = (/) /\ ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) i^i { M } ) = (/) /\ ( ( 1 ... ( M - I ) ) i^i { M } ) = (/) ) ) ) | 
						
							| 26 | 25 | simpld |  |-  ( ph -> ( ( ( 1 ... ( I - 1 ) ) i^i ( I ... ( M - 1 ) ) ) = (/) /\ ( ( 1 ... ( I - 1 ) ) i^i { M } ) = (/) /\ ( ( I ... ( M - 1 ) ) i^i { M } ) = (/) ) ) | 
						
							| 27 | 26 | simp1d |  |-  ( ph -> ( ( 1 ... ( I - 1 ) ) i^i ( I ... ( M - 1 ) ) ) = (/) ) | 
						
							| 28 | 16 24 27 | fnund |  |-  ( ph -> ( C u. D ) Fn ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) ) | 
						
							| 29 | 16 24 28 | 3jca |  |-  ( ph -> ( C Fn ( 1 ... ( I - 1 ) ) /\ D Fn ( I ... ( M - 1 ) ) /\ ( C u. D ) Fn ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) ) ) | 
						
							| 30 |  | fnsng |  |-  ( ( M e. NN /\ M e. NN ) -> { <. M , M >. } Fn { M } ) | 
						
							| 31 | 1 1 30 | syl2anc |  |-  ( ph -> { <. M , M >. } Fn { M } ) | 
						
							| 32 | 29 31 | jca |  |-  ( ph -> ( ( C Fn ( 1 ... ( I - 1 ) ) /\ D Fn ( I ... ( M - 1 ) ) /\ ( C u. D ) Fn ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) ) /\ { <. M , M >. } Fn { M } ) ) |