| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt20.1 |  |-  ( ph -> M e. NN ) | 
						
							| 2 |  | metakunt20.2 |  |-  ( ph -> I e. NN ) | 
						
							| 3 |  | metakunt20.3 |  |-  ( ph -> I <_ M ) | 
						
							| 4 |  | metakunt20.4 |  |-  B = ( x e. ( 1 ... M ) |-> if ( x = M , M , if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) ) ) | 
						
							| 5 |  | metakunt20.5 |  |-  C = ( x e. ( 1 ... ( I - 1 ) ) |-> ( x + ( M - I ) ) ) | 
						
							| 6 |  | metakunt20.6 |  |-  D = ( x e. ( I ... ( M - 1 ) ) |-> ( x + ( 1 - I ) ) ) | 
						
							| 7 |  | metakunt20.7 |  |-  ( ph -> X e. ( 1 ... M ) ) | 
						
							| 8 |  | metakunt20.8 |  |-  ( ph -> X = M ) | 
						
							| 9 | 4 | a1i |  |-  ( ph -> B = ( x e. ( 1 ... M ) |-> if ( x = M , M , if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) ) ) ) | 
						
							| 10 |  | eqeq1 |  |-  ( x = X -> ( x = M <-> X = M ) ) | 
						
							| 11 |  | breq1 |  |-  ( x = X -> ( x < I <-> X < I ) ) | 
						
							| 12 |  | oveq1 |  |-  ( x = X -> ( x + ( M - I ) ) = ( X + ( M - I ) ) ) | 
						
							| 13 |  | oveq1 |  |-  ( x = X -> ( x + ( 1 - I ) ) = ( X + ( 1 - I ) ) ) | 
						
							| 14 | 11 12 13 | ifbieq12d |  |-  ( x = X -> if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) = if ( X < I , ( X + ( M - I ) ) , ( X + ( 1 - I ) ) ) ) | 
						
							| 15 | 10 14 | ifbieq2d |  |-  ( x = X -> if ( x = M , M , if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) ) = if ( X = M , M , if ( X < I , ( X + ( M - I ) ) , ( X + ( 1 - I ) ) ) ) ) | 
						
							| 16 | 15 | adantl |  |-  ( ( ph /\ x = X ) -> if ( x = M , M , if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) ) = if ( X = M , M , if ( X < I , ( X + ( M - I ) ) , ( X + ( 1 - I ) ) ) ) ) | 
						
							| 17 |  | iftrue |  |-  ( X = M -> if ( X = M , M , if ( X < I , ( X + ( M - I ) ) , ( X + ( 1 - I ) ) ) ) = M ) | 
						
							| 18 | 8 17 | syl |  |-  ( ph -> if ( X = M , M , if ( X < I , ( X + ( M - I ) ) , ( X + ( 1 - I ) ) ) ) = M ) | 
						
							| 19 | 18 | adantr |  |-  ( ( ph /\ x = X ) -> if ( X = M , M , if ( X < I , ( X + ( M - I ) ) , ( X + ( 1 - I ) ) ) ) = M ) | 
						
							| 20 | 8 | eqcomd |  |-  ( ph -> M = X ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ph /\ x = X ) -> M = X ) | 
						
							| 22 | 19 21 | eqtrd |  |-  ( ( ph /\ x = X ) -> if ( X = M , M , if ( X < I , ( X + ( M - I ) ) , ( X + ( 1 - I ) ) ) ) = X ) | 
						
							| 23 | 16 22 | eqtrd |  |-  ( ( ph /\ x = X ) -> if ( x = M , M , if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) ) = X ) | 
						
							| 24 | 9 23 7 7 | fvmptd |  |-  ( ph -> ( B ` X ) = X ) | 
						
							| 25 | 8 | fveq2d |  |-  ( ph -> ( { <. M , M >. } ` X ) = ( { <. M , M >. } ` M ) ) | 
						
							| 26 |  | fvsng |  |-  ( ( M e. NN /\ M e. NN ) -> ( { <. M , M >. } ` M ) = M ) | 
						
							| 27 | 1 1 26 | syl2anc |  |-  ( ph -> ( { <. M , M >. } ` M ) = M ) | 
						
							| 28 | 25 27 | eqtrd |  |-  ( ph -> ( { <. M , M >. } ` X ) = M ) | 
						
							| 29 | 28 | eqcomd |  |-  ( ph -> M = ( { <. M , M >. } ` X ) ) | 
						
							| 30 | 24 8 29 | 3eqtrd |  |-  ( ph -> ( B ` X ) = ( { <. M , M >. } ` X ) ) | 
						
							| 31 | 1 2 3 4 5 6 | metakunt19 |  |-  ( ph -> ( ( C Fn ( 1 ... ( I - 1 ) ) /\ D Fn ( I ... ( M - 1 ) ) /\ ( C u. D ) Fn ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) ) /\ { <. M , M >. } Fn { M } ) ) | 
						
							| 32 | 31 | simpld |  |-  ( ph -> ( C Fn ( 1 ... ( I - 1 ) ) /\ D Fn ( I ... ( M - 1 ) ) /\ ( C u. D ) Fn ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) ) ) | 
						
							| 33 | 32 | simp3d |  |-  ( ph -> ( C u. D ) Fn ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) ) | 
						
							| 34 | 31 | simprd |  |-  ( ph -> { <. M , M >. } Fn { M } ) | 
						
							| 35 | 1 | nnzd |  |-  ( ph -> M e. ZZ ) | 
						
							| 36 |  | fzsn |  |-  ( M e. ZZ -> ( M ... M ) = { M } ) | 
						
							| 37 | 35 36 | syl |  |-  ( ph -> ( M ... M ) = { M } ) | 
						
							| 38 | 37 | ineq2d |  |-  ( ph -> ( ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) i^i ( M ... M ) ) = ( ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) i^i { M } ) ) | 
						
							| 39 | 38 | eqcomd |  |-  ( ph -> ( ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) i^i { M } ) = ( ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) i^i ( M ... M ) ) ) | 
						
							| 40 | 2 | nncnd |  |-  ( ph -> I e. CC ) | 
						
							| 41 | 1 | nncnd |  |-  ( ph -> M e. CC ) | 
						
							| 42 | 40 41 | pncan3d |  |-  ( ph -> ( I + ( M - I ) ) = M ) | 
						
							| 43 | 42 | oveq2d |  |-  ( ph -> ( 1 ..^ ( I + ( M - I ) ) ) = ( 1 ..^ M ) ) | 
						
							| 44 |  | fzoval |  |-  ( M e. ZZ -> ( 1 ..^ M ) = ( 1 ... ( M - 1 ) ) ) | 
						
							| 45 | 35 44 | syl |  |-  ( ph -> ( 1 ..^ M ) = ( 1 ... ( M - 1 ) ) ) | 
						
							| 46 | 43 45 | eqtrd |  |-  ( ph -> ( 1 ..^ ( I + ( M - I ) ) ) = ( 1 ... ( M - 1 ) ) ) | 
						
							| 47 | 46 | eqcomd |  |-  ( ph -> ( 1 ... ( M - 1 ) ) = ( 1 ..^ ( I + ( M - I ) ) ) ) | 
						
							| 48 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 49 | 2 48 | eleqtrdi |  |-  ( ph -> I e. ( ZZ>= ` 1 ) ) | 
						
							| 50 | 2 | nnzd |  |-  ( ph -> I e. ZZ ) | 
						
							| 51 | 50 35 | jca |  |-  ( ph -> ( I e. ZZ /\ M e. ZZ ) ) | 
						
							| 52 |  | znn0sub |  |-  ( ( I e. ZZ /\ M e. ZZ ) -> ( I <_ M <-> ( M - I ) e. NN0 ) ) | 
						
							| 53 | 51 52 | syl |  |-  ( ph -> ( I <_ M <-> ( M - I ) e. NN0 ) ) | 
						
							| 54 | 3 53 | mpbid |  |-  ( ph -> ( M - I ) e. NN0 ) | 
						
							| 55 |  | fzoun |  |-  ( ( I e. ( ZZ>= ` 1 ) /\ ( M - I ) e. NN0 ) -> ( 1 ..^ ( I + ( M - I ) ) ) = ( ( 1 ..^ I ) u. ( I ..^ ( I + ( M - I ) ) ) ) ) | 
						
							| 56 | 49 54 55 | syl2anc |  |-  ( ph -> ( 1 ..^ ( I + ( M - I ) ) ) = ( ( 1 ..^ I ) u. ( I ..^ ( I + ( M - I ) ) ) ) ) | 
						
							| 57 | 47 56 | eqtrd |  |-  ( ph -> ( 1 ... ( M - 1 ) ) = ( ( 1 ..^ I ) u. ( I ..^ ( I + ( M - I ) ) ) ) ) | 
						
							| 58 |  | fzoval |  |-  ( I e. ZZ -> ( 1 ..^ I ) = ( 1 ... ( I - 1 ) ) ) | 
						
							| 59 | 50 58 | syl |  |-  ( ph -> ( 1 ..^ I ) = ( 1 ... ( I - 1 ) ) ) | 
						
							| 60 | 42 | oveq2d |  |-  ( ph -> ( I ..^ ( I + ( M - I ) ) ) = ( I ..^ M ) ) | 
						
							| 61 |  | fzoval |  |-  ( M e. ZZ -> ( I ..^ M ) = ( I ... ( M - 1 ) ) ) | 
						
							| 62 | 35 61 | syl |  |-  ( ph -> ( I ..^ M ) = ( I ... ( M - 1 ) ) ) | 
						
							| 63 | 60 62 | eqtrd |  |-  ( ph -> ( I ..^ ( I + ( M - I ) ) ) = ( I ... ( M - 1 ) ) ) | 
						
							| 64 | 59 63 | uneq12d |  |-  ( ph -> ( ( 1 ..^ I ) u. ( I ..^ ( I + ( M - I ) ) ) ) = ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) ) | 
						
							| 65 | 57 64 | eqtrd |  |-  ( ph -> ( 1 ... ( M - 1 ) ) = ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) ) | 
						
							| 66 | 65 | ineq1d |  |-  ( ph -> ( ( 1 ... ( M - 1 ) ) i^i ( M ... M ) ) = ( ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) i^i ( M ... M ) ) ) | 
						
							| 67 | 66 | eqcomd |  |-  ( ph -> ( ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) i^i ( M ... M ) ) = ( ( 1 ... ( M - 1 ) ) i^i ( M ... M ) ) ) | 
						
							| 68 | 1 | nnred |  |-  ( ph -> M e. RR ) | 
						
							| 69 | 68 | ltm1d |  |-  ( ph -> ( M - 1 ) < M ) | 
						
							| 70 |  | fzdisj |  |-  ( ( M - 1 ) < M -> ( ( 1 ... ( M - 1 ) ) i^i ( M ... M ) ) = (/) ) | 
						
							| 71 | 69 70 | syl |  |-  ( ph -> ( ( 1 ... ( M - 1 ) ) i^i ( M ... M ) ) = (/) ) | 
						
							| 72 | 67 71 | eqtrd |  |-  ( ph -> ( ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) i^i ( M ... M ) ) = (/) ) | 
						
							| 73 | 39 72 | eqtrd |  |-  ( ph -> ( ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) i^i { M } ) = (/) ) | 
						
							| 74 |  | elsng |  |-  ( X e. ( 1 ... M ) -> ( X e. { M } <-> X = M ) ) | 
						
							| 75 | 7 74 | syl |  |-  ( ph -> ( X e. { M } <-> X = M ) ) | 
						
							| 76 | 8 75 | mpbird |  |-  ( ph -> X e. { M } ) | 
						
							| 77 | 33 34 73 76 | fvun2d |  |-  ( ph -> ( ( ( C u. D ) u. { <. M , M >. } ) ` X ) = ( { <. M , M >. } ` X ) ) | 
						
							| 78 | 77 | eqcomd |  |-  ( ph -> ( { <. M , M >. } ` X ) = ( ( ( C u. D ) u. { <. M , M >. } ) ` X ) ) | 
						
							| 79 | 30 78 | eqtrd |  |-  ( ph -> ( B ` X ) = ( ( ( C u. D ) u. { <. M , M >. } ) ` X ) ) |