Step |
Hyp |
Ref |
Expression |
1 |
|
metakunt20.1 |
|- ( ph -> M e. NN ) |
2 |
|
metakunt20.2 |
|- ( ph -> I e. NN ) |
3 |
|
metakunt20.3 |
|- ( ph -> I <_ M ) |
4 |
|
metakunt20.4 |
|- B = ( x e. ( 1 ... M ) |-> if ( x = M , M , if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) ) ) |
5 |
|
metakunt20.5 |
|- C = ( x e. ( 1 ... ( I - 1 ) ) |-> ( x + ( M - I ) ) ) |
6 |
|
metakunt20.6 |
|- D = ( x e. ( I ... ( M - 1 ) ) |-> ( x + ( 1 - I ) ) ) |
7 |
|
metakunt20.7 |
|- ( ph -> X e. ( 1 ... M ) ) |
8 |
|
metakunt20.8 |
|- ( ph -> X = M ) |
9 |
4
|
a1i |
|- ( ph -> B = ( x e. ( 1 ... M ) |-> if ( x = M , M , if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) ) ) ) |
10 |
|
eqeq1 |
|- ( x = X -> ( x = M <-> X = M ) ) |
11 |
|
breq1 |
|- ( x = X -> ( x < I <-> X < I ) ) |
12 |
|
oveq1 |
|- ( x = X -> ( x + ( M - I ) ) = ( X + ( M - I ) ) ) |
13 |
|
oveq1 |
|- ( x = X -> ( x + ( 1 - I ) ) = ( X + ( 1 - I ) ) ) |
14 |
11 12 13
|
ifbieq12d |
|- ( x = X -> if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) = if ( X < I , ( X + ( M - I ) ) , ( X + ( 1 - I ) ) ) ) |
15 |
10 14
|
ifbieq2d |
|- ( x = X -> if ( x = M , M , if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) ) = if ( X = M , M , if ( X < I , ( X + ( M - I ) ) , ( X + ( 1 - I ) ) ) ) ) |
16 |
15
|
adantl |
|- ( ( ph /\ x = X ) -> if ( x = M , M , if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) ) = if ( X = M , M , if ( X < I , ( X + ( M - I ) ) , ( X + ( 1 - I ) ) ) ) ) |
17 |
|
iftrue |
|- ( X = M -> if ( X = M , M , if ( X < I , ( X + ( M - I ) ) , ( X + ( 1 - I ) ) ) ) = M ) |
18 |
8 17
|
syl |
|- ( ph -> if ( X = M , M , if ( X < I , ( X + ( M - I ) ) , ( X + ( 1 - I ) ) ) ) = M ) |
19 |
18
|
adantr |
|- ( ( ph /\ x = X ) -> if ( X = M , M , if ( X < I , ( X + ( M - I ) ) , ( X + ( 1 - I ) ) ) ) = M ) |
20 |
8
|
eqcomd |
|- ( ph -> M = X ) |
21 |
20
|
adantr |
|- ( ( ph /\ x = X ) -> M = X ) |
22 |
19 21
|
eqtrd |
|- ( ( ph /\ x = X ) -> if ( X = M , M , if ( X < I , ( X + ( M - I ) ) , ( X + ( 1 - I ) ) ) ) = X ) |
23 |
16 22
|
eqtrd |
|- ( ( ph /\ x = X ) -> if ( x = M , M , if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) ) = X ) |
24 |
9 23 7 7
|
fvmptd |
|- ( ph -> ( B ` X ) = X ) |
25 |
8
|
fveq2d |
|- ( ph -> ( { <. M , M >. } ` X ) = ( { <. M , M >. } ` M ) ) |
26 |
|
fvsng |
|- ( ( M e. NN /\ M e. NN ) -> ( { <. M , M >. } ` M ) = M ) |
27 |
1 1 26
|
syl2anc |
|- ( ph -> ( { <. M , M >. } ` M ) = M ) |
28 |
25 27
|
eqtrd |
|- ( ph -> ( { <. M , M >. } ` X ) = M ) |
29 |
28
|
eqcomd |
|- ( ph -> M = ( { <. M , M >. } ` X ) ) |
30 |
24 8 29
|
3eqtrd |
|- ( ph -> ( B ` X ) = ( { <. M , M >. } ` X ) ) |
31 |
1 2 3 4 5 6
|
metakunt19 |
|- ( ph -> ( ( C Fn ( 1 ... ( I - 1 ) ) /\ D Fn ( I ... ( M - 1 ) ) /\ ( C u. D ) Fn ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) ) /\ { <. M , M >. } Fn { M } ) ) |
32 |
31
|
simpld |
|- ( ph -> ( C Fn ( 1 ... ( I - 1 ) ) /\ D Fn ( I ... ( M - 1 ) ) /\ ( C u. D ) Fn ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) ) ) |
33 |
32
|
simp3d |
|- ( ph -> ( C u. D ) Fn ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) ) |
34 |
31
|
simprd |
|- ( ph -> { <. M , M >. } Fn { M } ) |
35 |
1
|
nnzd |
|- ( ph -> M e. ZZ ) |
36 |
|
fzsn |
|- ( M e. ZZ -> ( M ... M ) = { M } ) |
37 |
35 36
|
syl |
|- ( ph -> ( M ... M ) = { M } ) |
38 |
37
|
ineq2d |
|- ( ph -> ( ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) i^i ( M ... M ) ) = ( ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) i^i { M } ) ) |
39 |
38
|
eqcomd |
|- ( ph -> ( ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) i^i { M } ) = ( ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) i^i ( M ... M ) ) ) |
40 |
2
|
nncnd |
|- ( ph -> I e. CC ) |
41 |
1
|
nncnd |
|- ( ph -> M e. CC ) |
42 |
40 41
|
pncan3d |
|- ( ph -> ( I + ( M - I ) ) = M ) |
43 |
42
|
oveq2d |
|- ( ph -> ( 1 ..^ ( I + ( M - I ) ) ) = ( 1 ..^ M ) ) |
44 |
|
fzoval |
|- ( M e. ZZ -> ( 1 ..^ M ) = ( 1 ... ( M - 1 ) ) ) |
45 |
35 44
|
syl |
|- ( ph -> ( 1 ..^ M ) = ( 1 ... ( M - 1 ) ) ) |
46 |
43 45
|
eqtrd |
|- ( ph -> ( 1 ..^ ( I + ( M - I ) ) ) = ( 1 ... ( M - 1 ) ) ) |
47 |
46
|
eqcomd |
|- ( ph -> ( 1 ... ( M - 1 ) ) = ( 1 ..^ ( I + ( M - I ) ) ) ) |
48 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
49 |
2 48
|
eleqtrdi |
|- ( ph -> I e. ( ZZ>= ` 1 ) ) |
50 |
2
|
nnzd |
|- ( ph -> I e. ZZ ) |
51 |
50 35
|
jca |
|- ( ph -> ( I e. ZZ /\ M e. ZZ ) ) |
52 |
|
znn0sub |
|- ( ( I e. ZZ /\ M e. ZZ ) -> ( I <_ M <-> ( M - I ) e. NN0 ) ) |
53 |
51 52
|
syl |
|- ( ph -> ( I <_ M <-> ( M - I ) e. NN0 ) ) |
54 |
3 53
|
mpbid |
|- ( ph -> ( M - I ) e. NN0 ) |
55 |
|
fzoun |
|- ( ( I e. ( ZZ>= ` 1 ) /\ ( M - I ) e. NN0 ) -> ( 1 ..^ ( I + ( M - I ) ) ) = ( ( 1 ..^ I ) u. ( I ..^ ( I + ( M - I ) ) ) ) ) |
56 |
49 54 55
|
syl2anc |
|- ( ph -> ( 1 ..^ ( I + ( M - I ) ) ) = ( ( 1 ..^ I ) u. ( I ..^ ( I + ( M - I ) ) ) ) ) |
57 |
47 56
|
eqtrd |
|- ( ph -> ( 1 ... ( M - 1 ) ) = ( ( 1 ..^ I ) u. ( I ..^ ( I + ( M - I ) ) ) ) ) |
58 |
|
fzoval |
|- ( I e. ZZ -> ( 1 ..^ I ) = ( 1 ... ( I - 1 ) ) ) |
59 |
50 58
|
syl |
|- ( ph -> ( 1 ..^ I ) = ( 1 ... ( I - 1 ) ) ) |
60 |
42
|
oveq2d |
|- ( ph -> ( I ..^ ( I + ( M - I ) ) ) = ( I ..^ M ) ) |
61 |
|
fzoval |
|- ( M e. ZZ -> ( I ..^ M ) = ( I ... ( M - 1 ) ) ) |
62 |
35 61
|
syl |
|- ( ph -> ( I ..^ M ) = ( I ... ( M - 1 ) ) ) |
63 |
60 62
|
eqtrd |
|- ( ph -> ( I ..^ ( I + ( M - I ) ) ) = ( I ... ( M - 1 ) ) ) |
64 |
59 63
|
uneq12d |
|- ( ph -> ( ( 1 ..^ I ) u. ( I ..^ ( I + ( M - I ) ) ) ) = ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) ) |
65 |
57 64
|
eqtrd |
|- ( ph -> ( 1 ... ( M - 1 ) ) = ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) ) |
66 |
65
|
ineq1d |
|- ( ph -> ( ( 1 ... ( M - 1 ) ) i^i ( M ... M ) ) = ( ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) i^i ( M ... M ) ) ) |
67 |
66
|
eqcomd |
|- ( ph -> ( ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) i^i ( M ... M ) ) = ( ( 1 ... ( M - 1 ) ) i^i ( M ... M ) ) ) |
68 |
1
|
nnred |
|- ( ph -> M e. RR ) |
69 |
68
|
ltm1d |
|- ( ph -> ( M - 1 ) < M ) |
70 |
|
fzdisj |
|- ( ( M - 1 ) < M -> ( ( 1 ... ( M - 1 ) ) i^i ( M ... M ) ) = (/) ) |
71 |
69 70
|
syl |
|- ( ph -> ( ( 1 ... ( M - 1 ) ) i^i ( M ... M ) ) = (/) ) |
72 |
67 71
|
eqtrd |
|- ( ph -> ( ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) i^i ( M ... M ) ) = (/) ) |
73 |
39 72
|
eqtrd |
|- ( ph -> ( ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) i^i { M } ) = (/) ) |
74 |
|
elsng |
|- ( X e. ( 1 ... M ) -> ( X e. { M } <-> X = M ) ) |
75 |
7 74
|
syl |
|- ( ph -> ( X e. { M } <-> X = M ) ) |
76 |
8 75
|
mpbird |
|- ( ph -> X e. { M } ) |
77 |
33 34 73 76
|
fvun2d |
|- ( ph -> ( ( ( C u. D ) u. { <. M , M >. } ) ` X ) = ( { <. M , M >. } ` X ) ) |
78 |
77
|
eqcomd |
|- ( ph -> ( { <. M , M >. } ` X ) = ( ( ( C u. D ) u. { <. M , M >. } ) ` X ) ) |
79 |
30 78
|
eqtrd |
|- ( ph -> ( B ` X ) = ( ( ( C u. D ) u. { <. M , M >. } ) ` X ) ) |