| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt21.1 |  |-  ( ph -> M e. NN ) | 
						
							| 2 |  | metakunt21.2 |  |-  ( ph -> I e. NN ) | 
						
							| 3 |  | metakunt21.3 |  |-  ( ph -> I <_ M ) | 
						
							| 4 |  | metakunt21.4 |  |-  B = ( x e. ( 1 ... M ) |-> if ( x = M , M , if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) ) ) | 
						
							| 5 |  | metakunt21.5 |  |-  C = ( x e. ( 1 ... ( I - 1 ) ) |-> ( x + ( M - I ) ) ) | 
						
							| 6 |  | metakunt21.6 |  |-  D = ( x e. ( I ... ( M - 1 ) ) |-> ( x + ( 1 - I ) ) ) | 
						
							| 7 |  | metakunt21.7 |  |-  ( ph -> X e. ( 1 ... M ) ) | 
						
							| 8 |  | metakunt21.8 |  |-  ( ph -> -. X = M ) | 
						
							| 9 |  | metakunt21.9 |  |-  ( ph -> X < I ) | 
						
							| 10 | 4 | a1i |  |-  ( ph -> B = ( x e. ( 1 ... M ) |-> if ( x = M , M , if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) ) ) ) | 
						
							| 11 |  | eqeq1 |  |-  ( x = X -> ( x = M <-> X = M ) ) | 
						
							| 12 |  | breq1 |  |-  ( x = X -> ( x < I <-> X < I ) ) | 
						
							| 13 |  | oveq1 |  |-  ( x = X -> ( x + ( M - I ) ) = ( X + ( M - I ) ) ) | 
						
							| 14 |  | oveq1 |  |-  ( x = X -> ( x + ( 1 - I ) ) = ( X + ( 1 - I ) ) ) | 
						
							| 15 | 12 13 14 | ifbieq12d |  |-  ( x = X -> if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) = if ( X < I , ( X + ( M - I ) ) , ( X + ( 1 - I ) ) ) ) | 
						
							| 16 | 11 15 | ifbieq2d |  |-  ( x = X -> if ( x = M , M , if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) ) = if ( X = M , M , if ( X < I , ( X + ( M - I ) ) , ( X + ( 1 - I ) ) ) ) ) | 
						
							| 17 | 16 | adantl |  |-  ( ( ph /\ x = X ) -> if ( x = M , M , if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) ) = if ( X = M , M , if ( X < I , ( X + ( M - I ) ) , ( X + ( 1 - I ) ) ) ) ) | 
						
							| 18 | 8 | iffalsed |  |-  ( ph -> if ( X = M , M , if ( X < I , ( X + ( M - I ) ) , ( X + ( 1 - I ) ) ) ) = if ( X < I , ( X + ( M - I ) ) , ( X + ( 1 - I ) ) ) ) | 
						
							| 19 | 9 | iftrued |  |-  ( ph -> if ( X < I , ( X + ( M - I ) ) , ( X + ( 1 - I ) ) ) = ( X + ( M - I ) ) ) | 
						
							| 20 | 18 19 | eqtrd |  |-  ( ph -> if ( X = M , M , if ( X < I , ( X + ( M - I ) ) , ( X + ( 1 - I ) ) ) ) = ( X + ( M - I ) ) ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ph /\ x = X ) -> if ( X = M , M , if ( X < I , ( X + ( M - I ) ) , ( X + ( 1 - I ) ) ) ) = ( X + ( M - I ) ) ) | 
						
							| 22 | 17 21 | eqtrd |  |-  ( ( ph /\ x = X ) -> if ( x = M , M , if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) ) = ( X + ( M - I ) ) ) | 
						
							| 23 | 7 | elfzelzd |  |-  ( ph -> X e. ZZ ) | 
						
							| 24 | 1 | nnzd |  |-  ( ph -> M e. ZZ ) | 
						
							| 25 | 2 | nnzd |  |-  ( ph -> I e. ZZ ) | 
						
							| 26 | 24 25 | zsubcld |  |-  ( ph -> ( M - I ) e. ZZ ) | 
						
							| 27 | 23 26 | zaddcld |  |-  ( ph -> ( X + ( M - I ) ) e. ZZ ) | 
						
							| 28 | 10 22 7 27 | fvmptd |  |-  ( ph -> ( B ` X ) = ( X + ( M - I ) ) ) | 
						
							| 29 | 1 2 3 4 5 6 | metakunt19 |  |-  ( ph -> ( ( C Fn ( 1 ... ( I - 1 ) ) /\ D Fn ( I ... ( M - 1 ) ) /\ ( C u. D ) Fn ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) ) /\ { <. M , M >. } Fn { M } ) ) | 
						
							| 30 | 29 | simpld |  |-  ( ph -> ( C Fn ( 1 ... ( I - 1 ) ) /\ D Fn ( I ... ( M - 1 ) ) /\ ( C u. D ) Fn ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) ) ) | 
						
							| 31 | 30 | simp3d |  |-  ( ph -> ( C u. D ) Fn ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) ) | 
						
							| 32 | 29 | simprd |  |-  ( ph -> { <. M , M >. } Fn { M } ) | 
						
							| 33 |  | indir |  |-  ( ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) i^i { M } ) = ( ( ( 1 ... ( I - 1 ) ) i^i { M } ) u. ( ( I ... ( M - 1 ) ) i^i { M } ) ) | 
						
							| 34 | 33 | a1i |  |-  ( ph -> ( ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) i^i { M } ) = ( ( ( 1 ... ( I - 1 ) ) i^i { M } ) u. ( ( I ... ( M - 1 ) ) i^i { M } ) ) ) | 
						
							| 35 | 1 2 3 | metakunt18 |  |-  ( ph -> ( ( ( ( 1 ... ( I - 1 ) ) i^i ( I ... ( M - 1 ) ) ) = (/) /\ ( ( 1 ... ( I - 1 ) ) i^i { M } ) = (/) /\ ( ( I ... ( M - 1 ) ) i^i { M } ) = (/) ) /\ ( ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) i^i ( 1 ... ( M - I ) ) ) = (/) /\ ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) i^i { M } ) = (/) /\ ( ( 1 ... ( M - I ) ) i^i { M } ) = (/) ) ) ) | 
						
							| 36 | 35 | simpld |  |-  ( ph -> ( ( ( 1 ... ( I - 1 ) ) i^i ( I ... ( M - 1 ) ) ) = (/) /\ ( ( 1 ... ( I - 1 ) ) i^i { M } ) = (/) /\ ( ( I ... ( M - 1 ) ) i^i { M } ) = (/) ) ) | 
						
							| 37 | 36 | simp2d |  |-  ( ph -> ( ( 1 ... ( I - 1 ) ) i^i { M } ) = (/) ) | 
						
							| 38 | 36 | simp3d |  |-  ( ph -> ( ( I ... ( M - 1 ) ) i^i { M } ) = (/) ) | 
						
							| 39 | 37 38 | uneq12d |  |-  ( ph -> ( ( ( 1 ... ( I - 1 ) ) i^i { M } ) u. ( ( I ... ( M - 1 ) ) i^i { M } ) ) = ( (/) u. (/) ) ) | 
						
							| 40 |  | unidm |  |-  ( (/) u. (/) ) = (/) | 
						
							| 41 | 40 | a1i |  |-  ( ph -> ( (/) u. (/) ) = (/) ) | 
						
							| 42 | 39 41 | eqtrd |  |-  ( ph -> ( ( ( 1 ... ( I - 1 ) ) i^i { M } ) u. ( ( I ... ( M - 1 ) ) i^i { M } ) ) = (/) ) | 
						
							| 43 | 34 42 | eqtrd |  |-  ( ph -> ( ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) i^i { M } ) = (/) ) | 
						
							| 44 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 45 | 25 44 | zsubcld |  |-  ( ph -> ( I - 1 ) e. ZZ ) | 
						
							| 46 |  | elfznn |  |-  ( X e. ( 1 ... M ) -> X e. NN ) | 
						
							| 47 | 7 46 | syl |  |-  ( ph -> X e. NN ) | 
						
							| 48 | 47 | nnge1d |  |-  ( ph -> 1 <_ X ) | 
						
							| 49 |  | zltlem1 |  |-  ( ( X e. ZZ /\ I e. ZZ ) -> ( X < I <-> X <_ ( I - 1 ) ) ) | 
						
							| 50 | 23 25 49 | syl2anc |  |-  ( ph -> ( X < I <-> X <_ ( I - 1 ) ) ) | 
						
							| 51 | 9 50 | mpbid |  |-  ( ph -> X <_ ( I - 1 ) ) | 
						
							| 52 | 44 45 23 48 51 | elfzd |  |-  ( ph -> X e. ( 1 ... ( I - 1 ) ) ) | 
						
							| 53 |  | elun1 |  |-  ( X e. ( 1 ... ( I - 1 ) ) -> X e. ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) ) | 
						
							| 54 | 52 53 | syl |  |-  ( ph -> X e. ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) ) | 
						
							| 55 | 31 32 43 54 | fvun1d |  |-  ( ph -> ( ( ( C u. D ) u. { <. M , M >. } ) ` X ) = ( ( C u. D ) ` X ) ) | 
						
							| 56 | 30 | simp1d |  |-  ( ph -> C Fn ( 1 ... ( I - 1 ) ) ) | 
						
							| 57 | 30 | simp2d |  |-  ( ph -> D Fn ( I ... ( M - 1 ) ) ) | 
						
							| 58 | 36 | simp1d |  |-  ( ph -> ( ( 1 ... ( I - 1 ) ) i^i ( I ... ( M - 1 ) ) ) = (/) ) | 
						
							| 59 | 56 57 58 52 | fvun1d |  |-  ( ph -> ( ( C u. D ) ` X ) = ( C ` X ) ) | 
						
							| 60 | 5 | a1i |  |-  ( ph -> C = ( x e. ( 1 ... ( I - 1 ) ) |-> ( x + ( M - I ) ) ) ) | 
						
							| 61 | 13 | adantl |  |-  ( ( ph /\ x = X ) -> ( x + ( M - I ) ) = ( X + ( M - I ) ) ) | 
						
							| 62 | 60 61 52 27 | fvmptd |  |-  ( ph -> ( C ` X ) = ( X + ( M - I ) ) ) | 
						
							| 63 | 59 62 | eqtrd |  |-  ( ph -> ( ( C u. D ) ` X ) = ( X + ( M - I ) ) ) | 
						
							| 64 | 55 63 | eqtrd |  |-  ( ph -> ( ( ( C u. D ) u. { <. M , M >. } ) ` X ) = ( X + ( M - I ) ) ) | 
						
							| 65 | 64 | eqcomd |  |-  ( ph -> ( X + ( M - I ) ) = ( ( ( C u. D ) u. { <. M , M >. } ) ` X ) ) | 
						
							| 66 | 28 65 | eqtrd |  |-  ( ph -> ( B ` X ) = ( ( ( C u. D ) u. { <. M , M >. } ) ` X ) ) |