Step |
Hyp |
Ref |
Expression |
1 |
|
metakunt21.1 |
|- ( ph -> M e. NN ) |
2 |
|
metakunt21.2 |
|- ( ph -> I e. NN ) |
3 |
|
metakunt21.3 |
|- ( ph -> I <_ M ) |
4 |
|
metakunt21.4 |
|- B = ( x e. ( 1 ... M ) |-> if ( x = M , M , if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) ) ) |
5 |
|
metakunt21.5 |
|- C = ( x e. ( 1 ... ( I - 1 ) ) |-> ( x + ( M - I ) ) ) |
6 |
|
metakunt21.6 |
|- D = ( x e. ( I ... ( M - 1 ) ) |-> ( x + ( 1 - I ) ) ) |
7 |
|
metakunt21.7 |
|- ( ph -> X e. ( 1 ... M ) ) |
8 |
|
metakunt21.8 |
|- ( ph -> -. X = M ) |
9 |
|
metakunt21.9 |
|- ( ph -> X < I ) |
10 |
4
|
a1i |
|- ( ph -> B = ( x e. ( 1 ... M ) |-> if ( x = M , M , if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) ) ) ) |
11 |
|
eqeq1 |
|- ( x = X -> ( x = M <-> X = M ) ) |
12 |
|
breq1 |
|- ( x = X -> ( x < I <-> X < I ) ) |
13 |
|
oveq1 |
|- ( x = X -> ( x + ( M - I ) ) = ( X + ( M - I ) ) ) |
14 |
|
oveq1 |
|- ( x = X -> ( x + ( 1 - I ) ) = ( X + ( 1 - I ) ) ) |
15 |
12 13 14
|
ifbieq12d |
|- ( x = X -> if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) = if ( X < I , ( X + ( M - I ) ) , ( X + ( 1 - I ) ) ) ) |
16 |
11 15
|
ifbieq2d |
|- ( x = X -> if ( x = M , M , if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) ) = if ( X = M , M , if ( X < I , ( X + ( M - I ) ) , ( X + ( 1 - I ) ) ) ) ) |
17 |
16
|
adantl |
|- ( ( ph /\ x = X ) -> if ( x = M , M , if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) ) = if ( X = M , M , if ( X < I , ( X + ( M - I ) ) , ( X + ( 1 - I ) ) ) ) ) |
18 |
8
|
iffalsed |
|- ( ph -> if ( X = M , M , if ( X < I , ( X + ( M - I ) ) , ( X + ( 1 - I ) ) ) ) = if ( X < I , ( X + ( M - I ) ) , ( X + ( 1 - I ) ) ) ) |
19 |
9
|
iftrued |
|- ( ph -> if ( X < I , ( X + ( M - I ) ) , ( X + ( 1 - I ) ) ) = ( X + ( M - I ) ) ) |
20 |
18 19
|
eqtrd |
|- ( ph -> if ( X = M , M , if ( X < I , ( X + ( M - I ) ) , ( X + ( 1 - I ) ) ) ) = ( X + ( M - I ) ) ) |
21 |
20
|
adantr |
|- ( ( ph /\ x = X ) -> if ( X = M , M , if ( X < I , ( X + ( M - I ) ) , ( X + ( 1 - I ) ) ) ) = ( X + ( M - I ) ) ) |
22 |
17 21
|
eqtrd |
|- ( ( ph /\ x = X ) -> if ( x = M , M , if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) ) = ( X + ( M - I ) ) ) |
23 |
7
|
elfzelzd |
|- ( ph -> X e. ZZ ) |
24 |
1
|
nnzd |
|- ( ph -> M e. ZZ ) |
25 |
2
|
nnzd |
|- ( ph -> I e. ZZ ) |
26 |
24 25
|
zsubcld |
|- ( ph -> ( M - I ) e. ZZ ) |
27 |
23 26
|
zaddcld |
|- ( ph -> ( X + ( M - I ) ) e. ZZ ) |
28 |
10 22 7 27
|
fvmptd |
|- ( ph -> ( B ` X ) = ( X + ( M - I ) ) ) |
29 |
1 2 3 4 5 6
|
metakunt19 |
|- ( ph -> ( ( C Fn ( 1 ... ( I - 1 ) ) /\ D Fn ( I ... ( M - 1 ) ) /\ ( C u. D ) Fn ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) ) /\ { <. M , M >. } Fn { M } ) ) |
30 |
29
|
simpld |
|- ( ph -> ( C Fn ( 1 ... ( I - 1 ) ) /\ D Fn ( I ... ( M - 1 ) ) /\ ( C u. D ) Fn ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) ) ) |
31 |
30
|
simp3d |
|- ( ph -> ( C u. D ) Fn ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) ) |
32 |
29
|
simprd |
|- ( ph -> { <. M , M >. } Fn { M } ) |
33 |
|
indir |
|- ( ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) i^i { M } ) = ( ( ( 1 ... ( I - 1 ) ) i^i { M } ) u. ( ( I ... ( M - 1 ) ) i^i { M } ) ) |
34 |
33
|
a1i |
|- ( ph -> ( ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) i^i { M } ) = ( ( ( 1 ... ( I - 1 ) ) i^i { M } ) u. ( ( I ... ( M - 1 ) ) i^i { M } ) ) ) |
35 |
1 2 3
|
metakunt18 |
|- ( ph -> ( ( ( ( 1 ... ( I - 1 ) ) i^i ( I ... ( M - 1 ) ) ) = (/) /\ ( ( 1 ... ( I - 1 ) ) i^i { M } ) = (/) /\ ( ( I ... ( M - 1 ) ) i^i { M } ) = (/) ) /\ ( ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) i^i ( 1 ... ( M - I ) ) ) = (/) /\ ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) i^i { M } ) = (/) /\ ( ( 1 ... ( M - I ) ) i^i { M } ) = (/) ) ) ) |
36 |
35
|
simpld |
|- ( ph -> ( ( ( 1 ... ( I - 1 ) ) i^i ( I ... ( M - 1 ) ) ) = (/) /\ ( ( 1 ... ( I - 1 ) ) i^i { M } ) = (/) /\ ( ( I ... ( M - 1 ) ) i^i { M } ) = (/) ) ) |
37 |
36
|
simp2d |
|- ( ph -> ( ( 1 ... ( I - 1 ) ) i^i { M } ) = (/) ) |
38 |
36
|
simp3d |
|- ( ph -> ( ( I ... ( M - 1 ) ) i^i { M } ) = (/) ) |
39 |
37 38
|
uneq12d |
|- ( ph -> ( ( ( 1 ... ( I - 1 ) ) i^i { M } ) u. ( ( I ... ( M - 1 ) ) i^i { M } ) ) = ( (/) u. (/) ) ) |
40 |
|
unidm |
|- ( (/) u. (/) ) = (/) |
41 |
40
|
a1i |
|- ( ph -> ( (/) u. (/) ) = (/) ) |
42 |
39 41
|
eqtrd |
|- ( ph -> ( ( ( 1 ... ( I - 1 ) ) i^i { M } ) u. ( ( I ... ( M - 1 ) ) i^i { M } ) ) = (/) ) |
43 |
34 42
|
eqtrd |
|- ( ph -> ( ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) i^i { M } ) = (/) ) |
44 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
45 |
25 44
|
zsubcld |
|- ( ph -> ( I - 1 ) e. ZZ ) |
46 |
|
elfznn |
|- ( X e. ( 1 ... M ) -> X e. NN ) |
47 |
7 46
|
syl |
|- ( ph -> X e. NN ) |
48 |
47
|
nnge1d |
|- ( ph -> 1 <_ X ) |
49 |
|
zltlem1 |
|- ( ( X e. ZZ /\ I e. ZZ ) -> ( X < I <-> X <_ ( I - 1 ) ) ) |
50 |
23 25 49
|
syl2anc |
|- ( ph -> ( X < I <-> X <_ ( I - 1 ) ) ) |
51 |
9 50
|
mpbid |
|- ( ph -> X <_ ( I - 1 ) ) |
52 |
44 45 23 48 51
|
elfzd |
|- ( ph -> X e. ( 1 ... ( I - 1 ) ) ) |
53 |
|
elun1 |
|- ( X e. ( 1 ... ( I - 1 ) ) -> X e. ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) ) |
54 |
52 53
|
syl |
|- ( ph -> X e. ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) ) |
55 |
31 32 43 54
|
fvun1d |
|- ( ph -> ( ( ( C u. D ) u. { <. M , M >. } ) ` X ) = ( ( C u. D ) ` X ) ) |
56 |
30
|
simp1d |
|- ( ph -> C Fn ( 1 ... ( I - 1 ) ) ) |
57 |
30
|
simp2d |
|- ( ph -> D Fn ( I ... ( M - 1 ) ) ) |
58 |
36
|
simp1d |
|- ( ph -> ( ( 1 ... ( I - 1 ) ) i^i ( I ... ( M - 1 ) ) ) = (/) ) |
59 |
56 57 58 52
|
fvun1d |
|- ( ph -> ( ( C u. D ) ` X ) = ( C ` X ) ) |
60 |
5
|
a1i |
|- ( ph -> C = ( x e. ( 1 ... ( I - 1 ) ) |-> ( x + ( M - I ) ) ) ) |
61 |
13
|
adantl |
|- ( ( ph /\ x = X ) -> ( x + ( M - I ) ) = ( X + ( M - I ) ) ) |
62 |
60 61 52 27
|
fvmptd |
|- ( ph -> ( C ` X ) = ( X + ( M - I ) ) ) |
63 |
59 62
|
eqtrd |
|- ( ph -> ( ( C u. D ) ` X ) = ( X + ( M - I ) ) ) |
64 |
55 63
|
eqtrd |
|- ( ph -> ( ( ( C u. D ) u. { <. M , M >. } ) ` X ) = ( X + ( M - I ) ) ) |
65 |
64
|
eqcomd |
|- ( ph -> ( X + ( M - I ) ) = ( ( ( C u. D ) u. { <. M , M >. } ) ` X ) ) |
66 |
28 65
|
eqtrd |
|- ( ph -> ( B ` X ) = ( ( ( C u. D ) u. { <. M , M >. } ) ` X ) ) |