Step |
Hyp |
Ref |
Expression |
1 |
|
metakunt22.1 |
|- ( ph -> M e. NN ) |
2 |
|
metakunt22.2 |
|- ( ph -> I e. NN ) |
3 |
|
metakunt22.3 |
|- ( ph -> I <_ M ) |
4 |
|
metakunt22.4 |
|- B = ( x e. ( 1 ... M ) |-> if ( x = M , M , if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) ) ) |
5 |
|
metakunt22.5 |
|- C = ( x e. ( 1 ... ( I - 1 ) ) |-> ( x + ( M - I ) ) ) |
6 |
|
metakunt22.6 |
|- D = ( x e. ( I ... ( M - 1 ) ) |-> ( x + ( 1 - I ) ) ) |
7 |
|
metakunt22.7 |
|- ( ph -> X e. ( 1 ... M ) ) |
8 |
|
metakunt22.8 |
|- ( ph -> -. X = M ) |
9 |
|
metakunt22.9 |
|- ( ph -> -. X < I ) |
10 |
4
|
a1i |
|- ( ph -> B = ( x e. ( 1 ... M ) |-> if ( x = M , M , if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) ) ) ) |
11 |
|
eqeq1 |
|- ( x = X -> ( x = M <-> X = M ) ) |
12 |
|
breq1 |
|- ( x = X -> ( x < I <-> X < I ) ) |
13 |
|
oveq1 |
|- ( x = X -> ( x + ( M - I ) ) = ( X + ( M - I ) ) ) |
14 |
|
oveq1 |
|- ( x = X -> ( x + ( 1 - I ) ) = ( X + ( 1 - I ) ) ) |
15 |
12 13 14
|
ifbieq12d |
|- ( x = X -> if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) = if ( X < I , ( X + ( M - I ) ) , ( X + ( 1 - I ) ) ) ) |
16 |
11 15
|
ifbieq2d |
|- ( x = X -> if ( x = M , M , if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) ) = if ( X = M , M , if ( X < I , ( X + ( M - I ) ) , ( X + ( 1 - I ) ) ) ) ) |
17 |
16
|
adantl |
|- ( ( ph /\ x = X ) -> if ( x = M , M , if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) ) = if ( X = M , M , if ( X < I , ( X + ( M - I ) ) , ( X + ( 1 - I ) ) ) ) ) |
18 |
|
iffalse |
|- ( -. X = M -> if ( X = M , M , if ( X < I , ( X + ( M - I ) ) , ( X + ( 1 - I ) ) ) ) = if ( X < I , ( X + ( M - I ) ) , ( X + ( 1 - I ) ) ) ) |
19 |
8 18
|
syl |
|- ( ph -> if ( X = M , M , if ( X < I , ( X + ( M - I ) ) , ( X + ( 1 - I ) ) ) ) = if ( X < I , ( X + ( M - I ) ) , ( X + ( 1 - I ) ) ) ) |
20 |
|
iffalse |
|- ( -. X < I -> if ( X < I , ( X + ( M - I ) ) , ( X + ( 1 - I ) ) ) = ( X + ( 1 - I ) ) ) |
21 |
9 20
|
syl |
|- ( ph -> if ( X < I , ( X + ( M - I ) ) , ( X + ( 1 - I ) ) ) = ( X + ( 1 - I ) ) ) |
22 |
19 21
|
eqtrd |
|- ( ph -> if ( X = M , M , if ( X < I , ( X + ( M - I ) ) , ( X + ( 1 - I ) ) ) ) = ( X + ( 1 - I ) ) ) |
23 |
22
|
adantr |
|- ( ( ph /\ x = X ) -> if ( X = M , M , if ( X < I , ( X + ( M - I ) ) , ( X + ( 1 - I ) ) ) ) = ( X + ( 1 - I ) ) ) |
24 |
17 23
|
eqtrd |
|- ( ( ph /\ x = X ) -> if ( x = M , M , if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) ) = ( X + ( 1 - I ) ) ) |
25 |
7
|
elfzelzd |
|- ( ph -> X e. ZZ ) |
26 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
27 |
2
|
nnzd |
|- ( ph -> I e. ZZ ) |
28 |
26 27
|
zsubcld |
|- ( ph -> ( 1 - I ) e. ZZ ) |
29 |
25 28
|
zaddcld |
|- ( ph -> ( X + ( 1 - I ) ) e. ZZ ) |
30 |
10 24 7 29
|
fvmptd |
|- ( ph -> ( B ` X ) = ( X + ( 1 - I ) ) ) |
31 |
1 2 3 4 5 6
|
metakunt19 |
|- ( ph -> ( ( C Fn ( 1 ... ( I - 1 ) ) /\ D Fn ( I ... ( M - 1 ) ) /\ ( C u. D ) Fn ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) ) /\ { <. M , M >. } Fn { M } ) ) |
32 |
31
|
simpld |
|- ( ph -> ( C Fn ( 1 ... ( I - 1 ) ) /\ D Fn ( I ... ( M - 1 ) ) /\ ( C u. D ) Fn ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) ) ) |
33 |
32
|
simp3d |
|- ( ph -> ( C u. D ) Fn ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) ) |
34 |
31
|
simprd |
|- ( ph -> { <. M , M >. } Fn { M } ) |
35 |
|
indir |
|- ( ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) i^i { M } ) = ( ( ( 1 ... ( I - 1 ) ) i^i { M } ) u. ( ( I ... ( M - 1 ) ) i^i { M } ) ) |
36 |
35
|
a1i |
|- ( ph -> ( ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) i^i { M } ) = ( ( ( 1 ... ( I - 1 ) ) i^i { M } ) u. ( ( I ... ( M - 1 ) ) i^i { M } ) ) ) |
37 |
1 2 3
|
metakunt18 |
|- ( ph -> ( ( ( ( 1 ... ( I - 1 ) ) i^i ( I ... ( M - 1 ) ) ) = (/) /\ ( ( 1 ... ( I - 1 ) ) i^i { M } ) = (/) /\ ( ( I ... ( M - 1 ) ) i^i { M } ) = (/) ) /\ ( ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) i^i ( 1 ... ( M - I ) ) ) = (/) /\ ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) i^i { M } ) = (/) /\ ( ( 1 ... ( M - I ) ) i^i { M } ) = (/) ) ) ) |
38 |
37
|
simpld |
|- ( ph -> ( ( ( 1 ... ( I - 1 ) ) i^i ( I ... ( M - 1 ) ) ) = (/) /\ ( ( 1 ... ( I - 1 ) ) i^i { M } ) = (/) /\ ( ( I ... ( M - 1 ) ) i^i { M } ) = (/) ) ) |
39 |
38
|
simp2d |
|- ( ph -> ( ( 1 ... ( I - 1 ) ) i^i { M } ) = (/) ) |
40 |
38
|
simp3d |
|- ( ph -> ( ( I ... ( M - 1 ) ) i^i { M } ) = (/) ) |
41 |
39 40
|
uneq12d |
|- ( ph -> ( ( ( 1 ... ( I - 1 ) ) i^i { M } ) u. ( ( I ... ( M - 1 ) ) i^i { M } ) ) = ( (/) u. (/) ) ) |
42 |
|
unidm |
|- ( (/) u. (/) ) = (/) |
43 |
42
|
a1i |
|- ( ph -> ( (/) u. (/) ) = (/) ) |
44 |
41 43
|
eqtrd |
|- ( ph -> ( ( ( 1 ... ( I - 1 ) ) i^i { M } ) u. ( ( I ... ( M - 1 ) ) i^i { M } ) ) = (/) ) |
45 |
36 44
|
eqtrd |
|- ( ph -> ( ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) i^i { M } ) = (/) ) |
46 |
1
|
nnzd |
|- ( ph -> M e. ZZ ) |
47 |
46 26
|
zsubcld |
|- ( ph -> ( M - 1 ) e. ZZ ) |
48 |
2
|
nnred |
|- ( ph -> I e. RR ) |
49 |
|
elfznn |
|- ( X e. ( 1 ... M ) -> X e. NN ) |
50 |
7 49
|
syl |
|- ( ph -> X e. NN ) |
51 |
50
|
nnred |
|- ( ph -> X e. RR ) |
52 |
48 51
|
lenltd |
|- ( ph -> ( I <_ X <-> -. X < I ) ) |
53 |
9 52
|
mpbird |
|- ( ph -> I <_ X ) |
54 |
|
elfzle2 |
|- ( X e. ( 1 ... M ) -> X <_ M ) |
55 |
7 54
|
syl |
|- ( ph -> X <_ M ) |
56 |
|
df-ne |
|- ( X =/= M <-> -. X = M ) |
57 |
8 56
|
sylibr |
|- ( ph -> X =/= M ) |
58 |
57
|
necomd |
|- ( ph -> M =/= X ) |
59 |
55 58
|
jca |
|- ( ph -> ( X <_ M /\ M =/= X ) ) |
60 |
1
|
nnred |
|- ( ph -> M e. RR ) |
61 |
51 60
|
ltlend |
|- ( ph -> ( X < M <-> ( X <_ M /\ M =/= X ) ) ) |
62 |
59 61
|
mpbird |
|- ( ph -> X < M ) |
63 |
|
zltlem1 |
|- ( ( X e. ZZ /\ M e. ZZ ) -> ( X < M <-> X <_ ( M - 1 ) ) ) |
64 |
25 46 63
|
syl2anc |
|- ( ph -> ( X < M <-> X <_ ( M - 1 ) ) ) |
65 |
62 64
|
mpbid |
|- ( ph -> X <_ ( M - 1 ) ) |
66 |
27 47 25 53 65
|
elfzd |
|- ( ph -> X e. ( I ... ( M - 1 ) ) ) |
67 |
|
elun2 |
|- ( X e. ( I ... ( M - 1 ) ) -> X e. ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) ) |
68 |
66 67
|
syl |
|- ( ph -> X e. ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) ) |
69 |
33 34 45 68
|
fvun1d |
|- ( ph -> ( ( ( C u. D ) u. { <. M , M >. } ) ` X ) = ( ( C u. D ) ` X ) ) |
70 |
32
|
simp1d |
|- ( ph -> C Fn ( 1 ... ( I - 1 ) ) ) |
71 |
32
|
simp2d |
|- ( ph -> D Fn ( I ... ( M - 1 ) ) ) |
72 |
38
|
simp1d |
|- ( ph -> ( ( 1 ... ( I - 1 ) ) i^i ( I ... ( M - 1 ) ) ) = (/) ) |
73 |
70 71 72 66
|
fvun2d |
|- ( ph -> ( ( C u. D ) ` X ) = ( D ` X ) ) |
74 |
6
|
a1i |
|- ( ph -> D = ( x e. ( I ... ( M - 1 ) ) |-> ( x + ( 1 - I ) ) ) ) |
75 |
|
simpr |
|- ( ( ph /\ x = X ) -> x = X ) |
76 |
75
|
oveq1d |
|- ( ( ph /\ x = X ) -> ( x + ( 1 - I ) ) = ( X + ( 1 - I ) ) ) |
77 |
25
|
zred |
|- ( ph -> X e. RR ) |
78 |
|
lenlt |
|- ( ( I e. RR /\ X e. RR ) -> ( I <_ X <-> -. X < I ) ) |
79 |
48 77 78
|
syl2anc |
|- ( ph -> ( I <_ X <-> -. X < I ) ) |
80 |
9 79
|
mpbird |
|- ( ph -> I <_ X ) |
81 |
77 60
|
ltlend |
|- ( ph -> ( X < M <-> ( X <_ M /\ M =/= X ) ) ) |
82 |
59 81
|
mpbird |
|- ( ph -> X < M ) |
83 |
82 64
|
mpbid |
|- ( ph -> X <_ ( M - 1 ) ) |
84 |
27 47 25 80 83
|
elfzd |
|- ( ph -> X e. ( I ... ( M - 1 ) ) ) |
85 |
74 76 84 29
|
fvmptd |
|- ( ph -> ( D ` X ) = ( X + ( 1 - I ) ) ) |
86 |
73 85
|
eqtrd |
|- ( ph -> ( ( C u. D ) ` X ) = ( X + ( 1 - I ) ) ) |
87 |
69 86
|
eqtrd |
|- ( ph -> ( ( ( C u. D ) u. { <. M , M >. } ) ` X ) = ( X + ( 1 - I ) ) ) |
88 |
87
|
eqcomd |
|- ( ph -> ( X + ( 1 - I ) ) = ( ( ( C u. D ) u. { <. M , M >. } ) ` X ) ) |
89 |
30 88
|
eqtrd |
|- ( ph -> ( B ` X ) = ( ( ( C u. D ) u. { <. M , M >. } ) ` X ) ) |