| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt23.1 |  |-  ( ph -> M e. NN ) | 
						
							| 2 |  | metakunt23.2 |  |-  ( ph -> I e. NN ) | 
						
							| 3 |  | metakunt23.3 |  |-  ( ph -> I <_ M ) | 
						
							| 4 |  | metakunt23.4 |  |-  B = ( x e. ( 1 ... M ) |-> if ( x = M , M , if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) ) ) | 
						
							| 5 |  | metakunt23.5 |  |-  C = ( x e. ( 1 ... ( I - 1 ) ) |-> ( x + ( M - I ) ) ) | 
						
							| 6 |  | metakunt23.6 |  |-  D = ( x e. ( I ... ( M - 1 ) ) |-> ( x + ( 1 - I ) ) ) | 
						
							| 7 |  | metakunt23.7 |  |-  ( ph -> X e. ( 1 ... M ) ) | 
						
							| 8 | 1 | adantr |  |-  ( ( ph /\ X = M ) -> M e. NN ) | 
						
							| 9 | 2 | adantr |  |-  ( ( ph /\ X = M ) -> I e. NN ) | 
						
							| 10 | 3 | adantr |  |-  ( ( ph /\ X = M ) -> I <_ M ) | 
						
							| 11 | 7 | adantr |  |-  ( ( ph /\ X = M ) -> X e. ( 1 ... M ) ) | 
						
							| 12 |  | simpr |  |-  ( ( ph /\ X = M ) -> X = M ) | 
						
							| 13 | 8 9 10 4 5 6 11 12 | metakunt20 |  |-  ( ( ph /\ X = M ) -> ( B ` X ) = ( ( ( C u. D ) u. { <. M , M >. } ) ` X ) ) | 
						
							| 14 | 1 | ad2antrr |  |-  ( ( ( ph /\ -. X = M ) /\ X < I ) -> M e. NN ) | 
						
							| 15 | 2 | ad2antrr |  |-  ( ( ( ph /\ -. X = M ) /\ X < I ) -> I e. NN ) | 
						
							| 16 | 3 | ad2antrr |  |-  ( ( ( ph /\ -. X = M ) /\ X < I ) -> I <_ M ) | 
						
							| 17 | 7 | ad2antrr |  |-  ( ( ( ph /\ -. X = M ) /\ X < I ) -> X e. ( 1 ... M ) ) | 
						
							| 18 |  | simplr |  |-  ( ( ( ph /\ -. X = M ) /\ X < I ) -> -. X = M ) | 
						
							| 19 |  | simpr |  |-  ( ( ( ph /\ -. X = M ) /\ X < I ) -> X < I ) | 
						
							| 20 | 14 15 16 4 5 6 17 18 19 | metakunt21 |  |-  ( ( ( ph /\ -. X = M ) /\ X < I ) -> ( B ` X ) = ( ( ( C u. D ) u. { <. M , M >. } ) ` X ) ) | 
						
							| 21 | 1 | ad2antrr |  |-  ( ( ( ph /\ -. X = M ) /\ -. X < I ) -> M e. NN ) | 
						
							| 22 | 2 | ad2antrr |  |-  ( ( ( ph /\ -. X = M ) /\ -. X < I ) -> I e. NN ) | 
						
							| 23 | 3 | ad2antrr |  |-  ( ( ( ph /\ -. X = M ) /\ -. X < I ) -> I <_ M ) | 
						
							| 24 | 7 | ad2antrr |  |-  ( ( ( ph /\ -. X = M ) /\ -. X < I ) -> X e. ( 1 ... M ) ) | 
						
							| 25 |  | simplr |  |-  ( ( ( ph /\ -. X = M ) /\ -. X < I ) -> -. X = M ) | 
						
							| 26 |  | simpr |  |-  ( ( ( ph /\ -. X = M ) /\ -. X < I ) -> -. X < I ) | 
						
							| 27 | 21 22 23 4 5 6 24 25 26 | metakunt22 |  |-  ( ( ( ph /\ -. X = M ) /\ -. X < I ) -> ( B ` X ) = ( ( ( C u. D ) u. { <. M , M >. } ) ` X ) ) | 
						
							| 28 | 20 27 | pm2.61dan |  |-  ( ( ph /\ -. X = M ) -> ( B ` X ) = ( ( ( C u. D ) u. { <. M , M >. } ) ` X ) ) | 
						
							| 29 | 13 28 | pm2.61dan |  |-  ( ph -> ( B ` X ) = ( ( ( C u. D ) u. { <. M , M >. } ) ` X ) ) |