Step |
Hyp |
Ref |
Expression |
1 |
|
metakunt23.1 |
|- ( ph -> M e. NN ) |
2 |
|
metakunt23.2 |
|- ( ph -> I e. NN ) |
3 |
|
metakunt23.3 |
|- ( ph -> I <_ M ) |
4 |
|
metakunt23.4 |
|- B = ( x e. ( 1 ... M ) |-> if ( x = M , M , if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) ) ) |
5 |
|
metakunt23.5 |
|- C = ( x e. ( 1 ... ( I - 1 ) ) |-> ( x + ( M - I ) ) ) |
6 |
|
metakunt23.6 |
|- D = ( x e. ( I ... ( M - 1 ) ) |-> ( x + ( 1 - I ) ) ) |
7 |
|
metakunt23.7 |
|- ( ph -> X e. ( 1 ... M ) ) |
8 |
1
|
adantr |
|- ( ( ph /\ X = M ) -> M e. NN ) |
9 |
2
|
adantr |
|- ( ( ph /\ X = M ) -> I e. NN ) |
10 |
3
|
adantr |
|- ( ( ph /\ X = M ) -> I <_ M ) |
11 |
7
|
adantr |
|- ( ( ph /\ X = M ) -> X e. ( 1 ... M ) ) |
12 |
|
simpr |
|- ( ( ph /\ X = M ) -> X = M ) |
13 |
8 9 10 4 5 6 11 12
|
metakunt20 |
|- ( ( ph /\ X = M ) -> ( B ` X ) = ( ( ( C u. D ) u. { <. M , M >. } ) ` X ) ) |
14 |
1
|
ad2antrr |
|- ( ( ( ph /\ -. X = M ) /\ X < I ) -> M e. NN ) |
15 |
2
|
ad2antrr |
|- ( ( ( ph /\ -. X = M ) /\ X < I ) -> I e. NN ) |
16 |
3
|
ad2antrr |
|- ( ( ( ph /\ -. X = M ) /\ X < I ) -> I <_ M ) |
17 |
7
|
ad2antrr |
|- ( ( ( ph /\ -. X = M ) /\ X < I ) -> X e. ( 1 ... M ) ) |
18 |
|
simplr |
|- ( ( ( ph /\ -. X = M ) /\ X < I ) -> -. X = M ) |
19 |
|
simpr |
|- ( ( ( ph /\ -. X = M ) /\ X < I ) -> X < I ) |
20 |
14 15 16 4 5 6 17 18 19
|
metakunt21 |
|- ( ( ( ph /\ -. X = M ) /\ X < I ) -> ( B ` X ) = ( ( ( C u. D ) u. { <. M , M >. } ) ` X ) ) |
21 |
1
|
ad2antrr |
|- ( ( ( ph /\ -. X = M ) /\ -. X < I ) -> M e. NN ) |
22 |
2
|
ad2antrr |
|- ( ( ( ph /\ -. X = M ) /\ -. X < I ) -> I e. NN ) |
23 |
3
|
ad2antrr |
|- ( ( ( ph /\ -. X = M ) /\ -. X < I ) -> I <_ M ) |
24 |
7
|
ad2antrr |
|- ( ( ( ph /\ -. X = M ) /\ -. X < I ) -> X e. ( 1 ... M ) ) |
25 |
|
simplr |
|- ( ( ( ph /\ -. X = M ) /\ -. X < I ) -> -. X = M ) |
26 |
|
simpr |
|- ( ( ( ph /\ -. X = M ) /\ -. X < I ) -> -. X < I ) |
27 |
21 22 23 4 5 6 24 25 26
|
metakunt22 |
|- ( ( ( ph /\ -. X = M ) /\ -. X < I ) -> ( B ` X ) = ( ( ( C u. D ) u. { <. M , M >. } ) ` X ) ) |
28 |
20 27
|
pm2.61dan |
|- ( ( ph /\ -. X = M ) -> ( B ` X ) = ( ( ( C u. D ) u. { <. M , M >. } ) ` X ) ) |
29 |
13 28
|
pm2.61dan |
|- ( ph -> ( B ` X ) = ( ( ( C u. D ) u. { <. M , M >. } ) ` X ) ) |