Step |
Hyp |
Ref |
Expression |
1 |
|
metakunt23.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
2 |
|
metakunt23.2 |
⊢ ( 𝜑 → 𝐼 ∈ ℕ ) |
3 |
|
metakunt23.3 |
⊢ ( 𝜑 → 𝐼 ≤ 𝑀 ) |
4 |
|
metakunt23.4 |
⊢ 𝐵 = ( 𝑥 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑥 = 𝑀 , 𝑀 , if ( 𝑥 < 𝐼 , ( 𝑥 + ( 𝑀 − 𝐼 ) ) , ( 𝑥 + ( 1 − 𝐼 ) ) ) ) ) |
5 |
|
metakunt23.5 |
⊢ 𝐶 = ( 𝑥 ∈ ( 1 ... ( 𝐼 − 1 ) ) ↦ ( 𝑥 + ( 𝑀 − 𝐼 ) ) ) |
6 |
|
metakunt23.6 |
⊢ 𝐷 = ( 𝑥 ∈ ( 𝐼 ... ( 𝑀 − 1 ) ) ↦ ( 𝑥 + ( 1 − 𝐼 ) ) ) |
7 |
|
metakunt23.7 |
⊢ ( 𝜑 → 𝑋 ∈ ( 1 ... 𝑀 ) ) |
8 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑀 ) → 𝑀 ∈ ℕ ) |
9 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑀 ) → 𝐼 ∈ ℕ ) |
10 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑀 ) → 𝐼 ≤ 𝑀 ) |
11 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑀 ) → 𝑋 ∈ ( 1 ... 𝑀 ) ) |
12 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑀 ) → 𝑋 = 𝑀 ) |
13 |
8 9 10 4 5 6 11 12
|
metakunt20 |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑀 ) → ( 𝐵 ‘ 𝑋 ) = ( ( ( 𝐶 ∪ 𝐷 ) ∪ { 〈 𝑀 , 𝑀 〉 } ) ‘ 𝑋 ) ) |
14 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ) ∧ 𝑋 < 𝐼 ) → 𝑀 ∈ ℕ ) |
15 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ) ∧ 𝑋 < 𝐼 ) → 𝐼 ∈ ℕ ) |
16 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ) ∧ 𝑋 < 𝐼 ) → 𝐼 ≤ 𝑀 ) |
17 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ) ∧ 𝑋 < 𝐼 ) → 𝑋 ∈ ( 1 ... 𝑀 ) ) |
18 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ) ∧ 𝑋 < 𝐼 ) → ¬ 𝑋 = 𝑀 ) |
19 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ) ∧ 𝑋 < 𝐼 ) → 𝑋 < 𝐼 ) |
20 |
14 15 16 4 5 6 17 18 19
|
metakunt21 |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ) ∧ 𝑋 < 𝐼 ) → ( 𝐵 ‘ 𝑋 ) = ( ( ( 𝐶 ∪ 𝐷 ) ∪ { 〈 𝑀 , 𝑀 〉 } ) ‘ 𝑋 ) ) |
21 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ) ∧ ¬ 𝑋 < 𝐼 ) → 𝑀 ∈ ℕ ) |
22 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ) ∧ ¬ 𝑋 < 𝐼 ) → 𝐼 ∈ ℕ ) |
23 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ) ∧ ¬ 𝑋 < 𝐼 ) → 𝐼 ≤ 𝑀 ) |
24 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ) ∧ ¬ 𝑋 < 𝐼 ) → 𝑋 ∈ ( 1 ... 𝑀 ) ) |
25 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ) ∧ ¬ 𝑋 < 𝐼 ) → ¬ 𝑋 = 𝑀 ) |
26 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ) ∧ ¬ 𝑋 < 𝐼 ) → ¬ 𝑋 < 𝐼 ) |
27 |
21 22 23 4 5 6 24 25 26
|
metakunt22 |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ) ∧ ¬ 𝑋 < 𝐼 ) → ( 𝐵 ‘ 𝑋 ) = ( ( ( 𝐶 ∪ 𝐷 ) ∪ { 〈 𝑀 , 𝑀 〉 } ) ‘ 𝑋 ) ) |
28 |
20 27
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ) → ( 𝐵 ‘ 𝑋 ) = ( ( ( 𝐶 ∪ 𝐷 ) ∪ { 〈 𝑀 , 𝑀 〉 } ) ‘ 𝑋 ) ) |
29 |
13 28
|
pm2.61dan |
⊢ ( 𝜑 → ( 𝐵 ‘ 𝑋 ) = ( ( ( 𝐶 ∪ 𝐷 ) ∪ { 〈 𝑀 , 𝑀 〉 } ) ‘ 𝑋 ) ) |