| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt23.1 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 2 |  | metakunt23.2 | ⊢ ( 𝜑  →  𝐼  ∈  ℕ ) | 
						
							| 3 |  | metakunt23.3 | ⊢ ( 𝜑  →  𝐼  ≤  𝑀 ) | 
						
							| 4 |  | metakunt23.4 | ⊢ 𝐵  =  ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝑀 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  ( 𝑥  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑥  +  ( 1  −  𝐼 ) ) ) ) ) | 
						
							| 5 |  | metakunt23.5 | ⊢ 𝐶  =  ( 𝑥  ∈  ( 1 ... ( 𝐼  −  1 ) )  ↦  ( 𝑥  +  ( 𝑀  −  𝐼 ) ) ) | 
						
							| 6 |  | metakunt23.6 | ⊢ 𝐷  =  ( 𝑥  ∈  ( 𝐼 ... ( 𝑀  −  1 ) )  ↦  ( 𝑥  +  ( 1  −  𝐼 ) ) ) | 
						
							| 7 |  | metakunt23.7 | ⊢ ( 𝜑  →  𝑋  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 8 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  =  𝑀 )  →  𝑀  ∈  ℕ ) | 
						
							| 9 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  =  𝑀 )  →  𝐼  ∈  ℕ ) | 
						
							| 10 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  =  𝑀 )  →  𝐼  ≤  𝑀 ) | 
						
							| 11 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  =  𝑀 )  →  𝑋  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 12 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑋  =  𝑀 )  →  𝑋  =  𝑀 ) | 
						
							| 13 | 8 9 10 4 5 6 11 12 | metakunt20 | ⊢ ( ( 𝜑  ∧  𝑋  =  𝑀 )  →  ( 𝐵 ‘ 𝑋 )  =  ( ( ( 𝐶  ∪  𝐷 )  ∪  { 〈 𝑀 ,  𝑀 〉 } ) ‘ 𝑋 ) ) | 
						
							| 14 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  𝑋  =  𝑀 )  ∧  𝑋  <  𝐼 )  →  𝑀  ∈  ℕ ) | 
						
							| 15 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  𝑋  =  𝑀 )  ∧  𝑋  <  𝐼 )  →  𝐼  ∈  ℕ ) | 
						
							| 16 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  𝑋  =  𝑀 )  ∧  𝑋  <  𝐼 )  →  𝐼  ≤  𝑀 ) | 
						
							| 17 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  𝑋  =  𝑀 )  ∧  𝑋  <  𝐼 )  →  𝑋  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 18 |  | simplr | ⊢ ( ( ( 𝜑  ∧  ¬  𝑋  =  𝑀 )  ∧  𝑋  <  𝐼 )  →  ¬  𝑋  =  𝑀 ) | 
						
							| 19 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ¬  𝑋  =  𝑀 )  ∧  𝑋  <  𝐼 )  →  𝑋  <  𝐼 ) | 
						
							| 20 | 14 15 16 4 5 6 17 18 19 | metakunt21 | ⊢ ( ( ( 𝜑  ∧  ¬  𝑋  =  𝑀 )  ∧  𝑋  <  𝐼 )  →  ( 𝐵 ‘ 𝑋 )  =  ( ( ( 𝐶  ∪  𝐷 )  ∪  { 〈 𝑀 ,  𝑀 〉 } ) ‘ 𝑋 ) ) | 
						
							| 21 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  𝑋  =  𝑀 )  ∧  ¬  𝑋  <  𝐼 )  →  𝑀  ∈  ℕ ) | 
						
							| 22 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  𝑋  =  𝑀 )  ∧  ¬  𝑋  <  𝐼 )  →  𝐼  ∈  ℕ ) | 
						
							| 23 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  𝑋  =  𝑀 )  ∧  ¬  𝑋  <  𝐼 )  →  𝐼  ≤  𝑀 ) | 
						
							| 24 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  𝑋  =  𝑀 )  ∧  ¬  𝑋  <  𝐼 )  →  𝑋  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 25 |  | simplr | ⊢ ( ( ( 𝜑  ∧  ¬  𝑋  =  𝑀 )  ∧  ¬  𝑋  <  𝐼 )  →  ¬  𝑋  =  𝑀 ) | 
						
							| 26 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ¬  𝑋  =  𝑀 )  ∧  ¬  𝑋  <  𝐼 )  →  ¬  𝑋  <  𝐼 ) | 
						
							| 27 | 21 22 23 4 5 6 24 25 26 | metakunt22 | ⊢ ( ( ( 𝜑  ∧  ¬  𝑋  =  𝑀 )  ∧  ¬  𝑋  <  𝐼 )  →  ( 𝐵 ‘ 𝑋 )  =  ( ( ( 𝐶  ∪  𝐷 )  ∪  { 〈 𝑀 ,  𝑀 〉 } ) ‘ 𝑋 ) ) | 
						
							| 28 | 20 27 | pm2.61dan | ⊢ ( ( 𝜑  ∧  ¬  𝑋  =  𝑀 )  →  ( 𝐵 ‘ 𝑋 )  =  ( ( ( 𝐶  ∪  𝐷 )  ∪  { 〈 𝑀 ,  𝑀 〉 } ) ‘ 𝑋 ) ) | 
						
							| 29 | 13 28 | pm2.61dan | ⊢ ( 𝜑  →  ( 𝐵 ‘ 𝑋 )  =  ( ( ( 𝐶  ∪  𝐷 )  ∪  { 〈 𝑀 ,  𝑀 〉 } ) ‘ 𝑋 ) ) |