Step |
Hyp |
Ref |
Expression |
1 |
|
metakunt20.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
2 |
|
metakunt20.2 |
⊢ ( 𝜑 → 𝐼 ∈ ℕ ) |
3 |
|
metakunt20.3 |
⊢ ( 𝜑 → 𝐼 ≤ 𝑀 ) |
4 |
|
metakunt20.4 |
⊢ 𝐵 = ( 𝑥 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑥 = 𝑀 , 𝑀 , if ( 𝑥 < 𝐼 , ( 𝑥 + ( 𝑀 − 𝐼 ) ) , ( 𝑥 + ( 1 − 𝐼 ) ) ) ) ) |
5 |
|
metakunt20.5 |
⊢ 𝐶 = ( 𝑥 ∈ ( 1 ... ( 𝐼 − 1 ) ) ↦ ( 𝑥 + ( 𝑀 − 𝐼 ) ) ) |
6 |
|
metakunt20.6 |
⊢ 𝐷 = ( 𝑥 ∈ ( 𝐼 ... ( 𝑀 − 1 ) ) ↦ ( 𝑥 + ( 1 − 𝐼 ) ) ) |
7 |
|
metakunt20.7 |
⊢ ( 𝜑 → 𝑋 ∈ ( 1 ... 𝑀 ) ) |
8 |
|
metakunt20.8 |
⊢ ( 𝜑 → 𝑋 = 𝑀 ) |
9 |
4
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( 𝑥 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑥 = 𝑀 , 𝑀 , if ( 𝑥 < 𝐼 , ( 𝑥 + ( 𝑀 − 𝐼 ) ) , ( 𝑥 + ( 1 − 𝐼 ) ) ) ) ) ) |
10 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 = 𝑀 ↔ 𝑋 = 𝑀 ) ) |
11 |
|
breq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 < 𝐼 ↔ 𝑋 < 𝐼 ) ) |
12 |
|
oveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 + ( 𝑀 − 𝐼 ) ) = ( 𝑋 + ( 𝑀 − 𝐼 ) ) ) |
13 |
|
oveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 + ( 1 − 𝐼 ) ) = ( 𝑋 + ( 1 − 𝐼 ) ) ) |
14 |
11 12 13
|
ifbieq12d |
⊢ ( 𝑥 = 𝑋 → if ( 𝑥 < 𝐼 , ( 𝑥 + ( 𝑀 − 𝐼 ) ) , ( 𝑥 + ( 1 − 𝐼 ) ) ) = if ( 𝑋 < 𝐼 , ( 𝑋 + ( 𝑀 − 𝐼 ) ) , ( 𝑋 + ( 1 − 𝐼 ) ) ) ) |
15 |
10 14
|
ifbieq2d |
⊢ ( 𝑥 = 𝑋 → if ( 𝑥 = 𝑀 , 𝑀 , if ( 𝑥 < 𝐼 , ( 𝑥 + ( 𝑀 − 𝐼 ) ) , ( 𝑥 + ( 1 − 𝐼 ) ) ) ) = if ( 𝑋 = 𝑀 , 𝑀 , if ( 𝑋 < 𝐼 , ( 𝑋 + ( 𝑀 − 𝐼 ) ) , ( 𝑋 + ( 1 − 𝐼 ) ) ) ) ) |
16 |
15
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → if ( 𝑥 = 𝑀 , 𝑀 , if ( 𝑥 < 𝐼 , ( 𝑥 + ( 𝑀 − 𝐼 ) ) , ( 𝑥 + ( 1 − 𝐼 ) ) ) ) = if ( 𝑋 = 𝑀 , 𝑀 , if ( 𝑋 < 𝐼 , ( 𝑋 + ( 𝑀 − 𝐼 ) ) , ( 𝑋 + ( 1 − 𝐼 ) ) ) ) ) |
17 |
|
iftrue |
⊢ ( 𝑋 = 𝑀 → if ( 𝑋 = 𝑀 , 𝑀 , if ( 𝑋 < 𝐼 , ( 𝑋 + ( 𝑀 − 𝐼 ) ) , ( 𝑋 + ( 1 − 𝐼 ) ) ) ) = 𝑀 ) |
18 |
8 17
|
syl |
⊢ ( 𝜑 → if ( 𝑋 = 𝑀 , 𝑀 , if ( 𝑋 < 𝐼 , ( 𝑋 + ( 𝑀 − 𝐼 ) ) , ( 𝑋 + ( 1 − 𝐼 ) ) ) ) = 𝑀 ) |
19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → if ( 𝑋 = 𝑀 , 𝑀 , if ( 𝑋 < 𝐼 , ( 𝑋 + ( 𝑀 − 𝐼 ) ) , ( 𝑋 + ( 1 − 𝐼 ) ) ) ) = 𝑀 ) |
20 |
8
|
eqcomd |
⊢ ( 𝜑 → 𝑀 = 𝑋 ) |
21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → 𝑀 = 𝑋 ) |
22 |
19 21
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → if ( 𝑋 = 𝑀 , 𝑀 , if ( 𝑋 < 𝐼 , ( 𝑋 + ( 𝑀 − 𝐼 ) ) , ( 𝑋 + ( 1 − 𝐼 ) ) ) ) = 𝑋 ) |
23 |
16 22
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → if ( 𝑥 = 𝑀 , 𝑀 , if ( 𝑥 < 𝐼 , ( 𝑥 + ( 𝑀 − 𝐼 ) ) , ( 𝑥 + ( 1 − 𝐼 ) ) ) ) = 𝑋 ) |
24 |
9 23 7 7
|
fvmptd |
⊢ ( 𝜑 → ( 𝐵 ‘ 𝑋 ) = 𝑋 ) |
25 |
8
|
fveq2d |
⊢ ( 𝜑 → ( { 〈 𝑀 , 𝑀 〉 } ‘ 𝑋 ) = ( { 〈 𝑀 , 𝑀 〉 } ‘ 𝑀 ) ) |
26 |
|
fvsng |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑀 ∈ ℕ ) → ( { 〈 𝑀 , 𝑀 〉 } ‘ 𝑀 ) = 𝑀 ) |
27 |
1 1 26
|
syl2anc |
⊢ ( 𝜑 → ( { 〈 𝑀 , 𝑀 〉 } ‘ 𝑀 ) = 𝑀 ) |
28 |
25 27
|
eqtrd |
⊢ ( 𝜑 → ( { 〈 𝑀 , 𝑀 〉 } ‘ 𝑋 ) = 𝑀 ) |
29 |
28
|
eqcomd |
⊢ ( 𝜑 → 𝑀 = ( { 〈 𝑀 , 𝑀 〉 } ‘ 𝑋 ) ) |
30 |
24 8 29
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐵 ‘ 𝑋 ) = ( { 〈 𝑀 , 𝑀 〉 } ‘ 𝑋 ) ) |
31 |
1 2 3 4 5 6
|
metakunt19 |
⊢ ( 𝜑 → ( ( 𝐶 Fn ( 1 ... ( 𝐼 − 1 ) ) ∧ 𝐷 Fn ( 𝐼 ... ( 𝑀 − 1 ) ) ∧ ( 𝐶 ∪ 𝐷 ) Fn ( ( 1 ... ( 𝐼 − 1 ) ) ∪ ( 𝐼 ... ( 𝑀 − 1 ) ) ) ) ∧ { 〈 𝑀 , 𝑀 〉 } Fn { 𝑀 } ) ) |
32 |
31
|
simpld |
⊢ ( 𝜑 → ( 𝐶 Fn ( 1 ... ( 𝐼 − 1 ) ) ∧ 𝐷 Fn ( 𝐼 ... ( 𝑀 − 1 ) ) ∧ ( 𝐶 ∪ 𝐷 ) Fn ( ( 1 ... ( 𝐼 − 1 ) ) ∪ ( 𝐼 ... ( 𝑀 − 1 ) ) ) ) ) |
33 |
32
|
simp3d |
⊢ ( 𝜑 → ( 𝐶 ∪ 𝐷 ) Fn ( ( 1 ... ( 𝐼 − 1 ) ) ∪ ( 𝐼 ... ( 𝑀 − 1 ) ) ) ) |
34 |
31
|
simprd |
⊢ ( 𝜑 → { 〈 𝑀 , 𝑀 〉 } Fn { 𝑀 } ) |
35 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
36 |
|
fzsn |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ... 𝑀 ) = { 𝑀 } ) |
37 |
35 36
|
syl |
⊢ ( 𝜑 → ( 𝑀 ... 𝑀 ) = { 𝑀 } ) |
38 |
37
|
ineq2d |
⊢ ( 𝜑 → ( ( ( 1 ... ( 𝐼 − 1 ) ) ∪ ( 𝐼 ... ( 𝑀 − 1 ) ) ) ∩ ( 𝑀 ... 𝑀 ) ) = ( ( ( 1 ... ( 𝐼 − 1 ) ) ∪ ( 𝐼 ... ( 𝑀 − 1 ) ) ) ∩ { 𝑀 } ) ) |
39 |
38
|
eqcomd |
⊢ ( 𝜑 → ( ( ( 1 ... ( 𝐼 − 1 ) ) ∪ ( 𝐼 ... ( 𝑀 − 1 ) ) ) ∩ { 𝑀 } ) = ( ( ( 1 ... ( 𝐼 − 1 ) ) ∪ ( 𝐼 ... ( 𝑀 − 1 ) ) ) ∩ ( 𝑀 ... 𝑀 ) ) ) |
40 |
2
|
nncnd |
⊢ ( 𝜑 → 𝐼 ∈ ℂ ) |
41 |
1
|
nncnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
42 |
40 41
|
pncan3d |
⊢ ( 𝜑 → ( 𝐼 + ( 𝑀 − 𝐼 ) ) = 𝑀 ) |
43 |
42
|
oveq2d |
⊢ ( 𝜑 → ( 1 ..^ ( 𝐼 + ( 𝑀 − 𝐼 ) ) ) = ( 1 ..^ 𝑀 ) ) |
44 |
|
fzoval |
⊢ ( 𝑀 ∈ ℤ → ( 1 ..^ 𝑀 ) = ( 1 ... ( 𝑀 − 1 ) ) ) |
45 |
35 44
|
syl |
⊢ ( 𝜑 → ( 1 ..^ 𝑀 ) = ( 1 ... ( 𝑀 − 1 ) ) ) |
46 |
43 45
|
eqtrd |
⊢ ( 𝜑 → ( 1 ..^ ( 𝐼 + ( 𝑀 − 𝐼 ) ) ) = ( 1 ... ( 𝑀 − 1 ) ) ) |
47 |
46
|
eqcomd |
⊢ ( 𝜑 → ( 1 ... ( 𝑀 − 1 ) ) = ( 1 ..^ ( 𝐼 + ( 𝑀 − 𝐼 ) ) ) ) |
48 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
49 |
2 48
|
eleqtrdi |
⊢ ( 𝜑 → 𝐼 ∈ ( ℤ≥ ‘ 1 ) ) |
50 |
2
|
nnzd |
⊢ ( 𝜑 → 𝐼 ∈ ℤ ) |
51 |
50 35
|
jca |
⊢ ( 𝜑 → ( 𝐼 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) |
52 |
|
znn0sub |
⊢ ( ( 𝐼 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝐼 ≤ 𝑀 ↔ ( 𝑀 − 𝐼 ) ∈ ℕ0 ) ) |
53 |
51 52
|
syl |
⊢ ( 𝜑 → ( 𝐼 ≤ 𝑀 ↔ ( 𝑀 − 𝐼 ) ∈ ℕ0 ) ) |
54 |
3 53
|
mpbid |
⊢ ( 𝜑 → ( 𝑀 − 𝐼 ) ∈ ℕ0 ) |
55 |
|
fzoun |
⊢ ( ( 𝐼 ∈ ( ℤ≥ ‘ 1 ) ∧ ( 𝑀 − 𝐼 ) ∈ ℕ0 ) → ( 1 ..^ ( 𝐼 + ( 𝑀 − 𝐼 ) ) ) = ( ( 1 ..^ 𝐼 ) ∪ ( 𝐼 ..^ ( 𝐼 + ( 𝑀 − 𝐼 ) ) ) ) ) |
56 |
49 54 55
|
syl2anc |
⊢ ( 𝜑 → ( 1 ..^ ( 𝐼 + ( 𝑀 − 𝐼 ) ) ) = ( ( 1 ..^ 𝐼 ) ∪ ( 𝐼 ..^ ( 𝐼 + ( 𝑀 − 𝐼 ) ) ) ) ) |
57 |
47 56
|
eqtrd |
⊢ ( 𝜑 → ( 1 ... ( 𝑀 − 1 ) ) = ( ( 1 ..^ 𝐼 ) ∪ ( 𝐼 ..^ ( 𝐼 + ( 𝑀 − 𝐼 ) ) ) ) ) |
58 |
|
fzoval |
⊢ ( 𝐼 ∈ ℤ → ( 1 ..^ 𝐼 ) = ( 1 ... ( 𝐼 − 1 ) ) ) |
59 |
50 58
|
syl |
⊢ ( 𝜑 → ( 1 ..^ 𝐼 ) = ( 1 ... ( 𝐼 − 1 ) ) ) |
60 |
42
|
oveq2d |
⊢ ( 𝜑 → ( 𝐼 ..^ ( 𝐼 + ( 𝑀 − 𝐼 ) ) ) = ( 𝐼 ..^ 𝑀 ) ) |
61 |
|
fzoval |
⊢ ( 𝑀 ∈ ℤ → ( 𝐼 ..^ 𝑀 ) = ( 𝐼 ... ( 𝑀 − 1 ) ) ) |
62 |
35 61
|
syl |
⊢ ( 𝜑 → ( 𝐼 ..^ 𝑀 ) = ( 𝐼 ... ( 𝑀 − 1 ) ) ) |
63 |
60 62
|
eqtrd |
⊢ ( 𝜑 → ( 𝐼 ..^ ( 𝐼 + ( 𝑀 − 𝐼 ) ) ) = ( 𝐼 ... ( 𝑀 − 1 ) ) ) |
64 |
59 63
|
uneq12d |
⊢ ( 𝜑 → ( ( 1 ..^ 𝐼 ) ∪ ( 𝐼 ..^ ( 𝐼 + ( 𝑀 − 𝐼 ) ) ) ) = ( ( 1 ... ( 𝐼 − 1 ) ) ∪ ( 𝐼 ... ( 𝑀 − 1 ) ) ) ) |
65 |
57 64
|
eqtrd |
⊢ ( 𝜑 → ( 1 ... ( 𝑀 − 1 ) ) = ( ( 1 ... ( 𝐼 − 1 ) ) ∪ ( 𝐼 ... ( 𝑀 − 1 ) ) ) ) |
66 |
65
|
ineq1d |
⊢ ( 𝜑 → ( ( 1 ... ( 𝑀 − 1 ) ) ∩ ( 𝑀 ... 𝑀 ) ) = ( ( ( 1 ... ( 𝐼 − 1 ) ) ∪ ( 𝐼 ... ( 𝑀 − 1 ) ) ) ∩ ( 𝑀 ... 𝑀 ) ) ) |
67 |
66
|
eqcomd |
⊢ ( 𝜑 → ( ( ( 1 ... ( 𝐼 − 1 ) ) ∪ ( 𝐼 ... ( 𝑀 − 1 ) ) ) ∩ ( 𝑀 ... 𝑀 ) ) = ( ( 1 ... ( 𝑀 − 1 ) ) ∩ ( 𝑀 ... 𝑀 ) ) ) |
68 |
1
|
nnred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
69 |
68
|
ltm1d |
⊢ ( 𝜑 → ( 𝑀 − 1 ) < 𝑀 ) |
70 |
|
fzdisj |
⊢ ( ( 𝑀 − 1 ) < 𝑀 → ( ( 1 ... ( 𝑀 − 1 ) ) ∩ ( 𝑀 ... 𝑀 ) ) = ∅ ) |
71 |
69 70
|
syl |
⊢ ( 𝜑 → ( ( 1 ... ( 𝑀 − 1 ) ) ∩ ( 𝑀 ... 𝑀 ) ) = ∅ ) |
72 |
67 71
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 1 ... ( 𝐼 − 1 ) ) ∪ ( 𝐼 ... ( 𝑀 − 1 ) ) ) ∩ ( 𝑀 ... 𝑀 ) ) = ∅ ) |
73 |
39 72
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 1 ... ( 𝐼 − 1 ) ) ∪ ( 𝐼 ... ( 𝑀 − 1 ) ) ) ∩ { 𝑀 } ) = ∅ ) |
74 |
|
elsng |
⊢ ( 𝑋 ∈ ( 1 ... 𝑀 ) → ( 𝑋 ∈ { 𝑀 } ↔ 𝑋 = 𝑀 ) ) |
75 |
7 74
|
syl |
⊢ ( 𝜑 → ( 𝑋 ∈ { 𝑀 } ↔ 𝑋 = 𝑀 ) ) |
76 |
8 75
|
mpbird |
⊢ ( 𝜑 → 𝑋 ∈ { 𝑀 } ) |
77 |
33 34 73 76
|
fvun2d |
⊢ ( 𝜑 → ( ( ( 𝐶 ∪ 𝐷 ) ∪ { 〈 𝑀 , 𝑀 〉 } ) ‘ 𝑋 ) = ( { 〈 𝑀 , 𝑀 〉 } ‘ 𝑋 ) ) |
78 |
77
|
eqcomd |
⊢ ( 𝜑 → ( { 〈 𝑀 , 𝑀 〉 } ‘ 𝑋 ) = ( ( ( 𝐶 ∪ 𝐷 ) ∪ { 〈 𝑀 , 𝑀 〉 } ) ‘ 𝑋 ) ) |
79 |
30 78
|
eqtrd |
⊢ ( 𝜑 → ( 𝐵 ‘ 𝑋 ) = ( ( ( 𝐶 ∪ 𝐷 ) ∪ { 〈 𝑀 , 𝑀 〉 } ) ‘ 𝑋 ) ) |