| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt20.1 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 2 |  | metakunt20.2 | ⊢ ( 𝜑  →  𝐼  ∈  ℕ ) | 
						
							| 3 |  | metakunt20.3 | ⊢ ( 𝜑  →  𝐼  ≤  𝑀 ) | 
						
							| 4 |  | metakunt20.4 | ⊢ 𝐵  =  ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝑀 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  ( 𝑥  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑥  +  ( 1  −  𝐼 ) ) ) ) ) | 
						
							| 5 |  | metakunt20.5 | ⊢ 𝐶  =  ( 𝑥  ∈  ( 1 ... ( 𝐼  −  1 ) )  ↦  ( 𝑥  +  ( 𝑀  −  𝐼 ) ) ) | 
						
							| 6 |  | metakunt20.6 | ⊢ 𝐷  =  ( 𝑥  ∈  ( 𝐼 ... ( 𝑀  −  1 ) )  ↦  ( 𝑥  +  ( 1  −  𝐼 ) ) ) | 
						
							| 7 |  | metakunt20.7 | ⊢ ( 𝜑  →  𝑋  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 8 |  | metakunt20.8 | ⊢ ( 𝜑  →  𝑋  =  𝑀 ) | 
						
							| 9 | 4 | a1i | ⊢ ( 𝜑  →  𝐵  =  ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝑀 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  ( 𝑥  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑥  +  ( 1  −  𝐼 ) ) ) ) ) ) | 
						
							| 10 |  | eqeq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  =  𝑀  ↔  𝑋  =  𝑀 ) ) | 
						
							| 11 |  | breq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  <  𝐼  ↔  𝑋  <  𝐼 ) ) | 
						
							| 12 |  | oveq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  +  ( 𝑀  −  𝐼 ) )  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ) | 
						
							| 13 |  | oveq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  +  ( 1  −  𝐼 ) )  =  ( 𝑋  +  ( 1  −  𝐼 ) ) ) | 
						
							| 14 | 11 12 13 | ifbieq12d | ⊢ ( 𝑥  =  𝑋  →  if ( 𝑥  <  𝐼 ,  ( 𝑥  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑥  +  ( 1  −  𝐼 ) ) )  =  if ( 𝑋  <  𝐼 ,  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑋  +  ( 1  −  𝐼 ) ) ) ) | 
						
							| 15 | 10 14 | ifbieq2d | ⊢ ( 𝑥  =  𝑋  →  if ( 𝑥  =  𝑀 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  ( 𝑥  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑥  +  ( 1  −  𝐼 ) ) ) )  =  if ( 𝑋  =  𝑀 ,  𝑀 ,  if ( 𝑋  <  𝐼 ,  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑋  +  ( 1  −  𝐼 ) ) ) ) ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  if ( 𝑥  =  𝑀 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  ( 𝑥  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑥  +  ( 1  −  𝐼 ) ) ) )  =  if ( 𝑋  =  𝑀 ,  𝑀 ,  if ( 𝑋  <  𝐼 ,  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑋  +  ( 1  −  𝐼 ) ) ) ) ) | 
						
							| 17 |  | iftrue | ⊢ ( 𝑋  =  𝑀  →  if ( 𝑋  =  𝑀 ,  𝑀 ,  if ( 𝑋  <  𝐼 ,  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑋  +  ( 1  −  𝐼 ) ) ) )  =  𝑀 ) | 
						
							| 18 | 8 17 | syl | ⊢ ( 𝜑  →  if ( 𝑋  =  𝑀 ,  𝑀 ,  if ( 𝑋  <  𝐼 ,  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑋  +  ( 1  −  𝐼 ) ) ) )  =  𝑀 ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  if ( 𝑋  =  𝑀 ,  𝑀 ,  if ( 𝑋  <  𝐼 ,  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑋  +  ( 1  −  𝐼 ) ) ) )  =  𝑀 ) | 
						
							| 20 | 8 | eqcomd | ⊢ ( 𝜑  →  𝑀  =  𝑋 ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  𝑀  =  𝑋 ) | 
						
							| 22 | 19 21 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  if ( 𝑋  =  𝑀 ,  𝑀 ,  if ( 𝑋  <  𝐼 ,  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑋  +  ( 1  −  𝐼 ) ) ) )  =  𝑋 ) | 
						
							| 23 | 16 22 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  if ( 𝑥  =  𝑀 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  ( 𝑥  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑥  +  ( 1  −  𝐼 ) ) ) )  =  𝑋 ) | 
						
							| 24 | 9 23 7 7 | fvmptd | ⊢ ( 𝜑  →  ( 𝐵 ‘ 𝑋 )  =  𝑋 ) | 
						
							| 25 | 8 | fveq2d | ⊢ ( 𝜑  →  ( { 〈 𝑀 ,  𝑀 〉 } ‘ 𝑋 )  =  ( { 〈 𝑀 ,  𝑀 〉 } ‘ 𝑀 ) ) | 
						
							| 26 |  | fvsng | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑀  ∈  ℕ )  →  ( { 〈 𝑀 ,  𝑀 〉 } ‘ 𝑀 )  =  𝑀 ) | 
						
							| 27 | 1 1 26 | syl2anc | ⊢ ( 𝜑  →  ( { 〈 𝑀 ,  𝑀 〉 } ‘ 𝑀 )  =  𝑀 ) | 
						
							| 28 | 25 27 | eqtrd | ⊢ ( 𝜑  →  ( { 〈 𝑀 ,  𝑀 〉 } ‘ 𝑋 )  =  𝑀 ) | 
						
							| 29 | 28 | eqcomd | ⊢ ( 𝜑  →  𝑀  =  ( { 〈 𝑀 ,  𝑀 〉 } ‘ 𝑋 ) ) | 
						
							| 30 | 24 8 29 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝐵 ‘ 𝑋 )  =  ( { 〈 𝑀 ,  𝑀 〉 } ‘ 𝑋 ) ) | 
						
							| 31 | 1 2 3 4 5 6 | metakunt19 | ⊢ ( 𝜑  →  ( ( 𝐶  Fn  ( 1 ... ( 𝐼  −  1 ) )  ∧  𝐷  Fn  ( 𝐼 ... ( 𝑀  −  1 ) )  ∧  ( 𝐶  ∪  𝐷 )  Fn  ( ( 1 ... ( 𝐼  −  1 ) )  ∪  ( 𝐼 ... ( 𝑀  −  1 ) ) ) )  ∧  { 〈 𝑀 ,  𝑀 〉 }  Fn  { 𝑀 } ) ) | 
						
							| 32 | 31 | simpld | ⊢ ( 𝜑  →  ( 𝐶  Fn  ( 1 ... ( 𝐼  −  1 ) )  ∧  𝐷  Fn  ( 𝐼 ... ( 𝑀  −  1 ) )  ∧  ( 𝐶  ∪  𝐷 )  Fn  ( ( 1 ... ( 𝐼  −  1 ) )  ∪  ( 𝐼 ... ( 𝑀  −  1 ) ) ) ) ) | 
						
							| 33 | 32 | simp3d | ⊢ ( 𝜑  →  ( 𝐶  ∪  𝐷 )  Fn  ( ( 1 ... ( 𝐼  −  1 ) )  ∪  ( 𝐼 ... ( 𝑀  −  1 ) ) ) ) | 
						
							| 34 | 31 | simprd | ⊢ ( 𝜑  →  { 〈 𝑀 ,  𝑀 〉 }  Fn  { 𝑀 } ) | 
						
							| 35 | 1 | nnzd | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 36 |  | fzsn | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝑀 ... 𝑀 )  =  { 𝑀 } ) | 
						
							| 37 | 35 36 | syl | ⊢ ( 𝜑  →  ( 𝑀 ... 𝑀 )  =  { 𝑀 } ) | 
						
							| 38 | 37 | ineq2d | ⊢ ( 𝜑  →  ( ( ( 1 ... ( 𝐼  −  1 ) )  ∪  ( 𝐼 ... ( 𝑀  −  1 ) ) )  ∩  ( 𝑀 ... 𝑀 ) )  =  ( ( ( 1 ... ( 𝐼  −  1 ) )  ∪  ( 𝐼 ... ( 𝑀  −  1 ) ) )  ∩  { 𝑀 } ) ) | 
						
							| 39 | 38 | eqcomd | ⊢ ( 𝜑  →  ( ( ( 1 ... ( 𝐼  −  1 ) )  ∪  ( 𝐼 ... ( 𝑀  −  1 ) ) )  ∩  { 𝑀 } )  =  ( ( ( 1 ... ( 𝐼  −  1 ) )  ∪  ( 𝐼 ... ( 𝑀  −  1 ) ) )  ∩  ( 𝑀 ... 𝑀 ) ) ) | 
						
							| 40 | 2 | nncnd | ⊢ ( 𝜑  →  𝐼  ∈  ℂ ) | 
						
							| 41 | 1 | nncnd | ⊢ ( 𝜑  →  𝑀  ∈  ℂ ) | 
						
							| 42 | 40 41 | pncan3d | ⊢ ( 𝜑  →  ( 𝐼  +  ( 𝑀  −  𝐼 ) )  =  𝑀 ) | 
						
							| 43 | 42 | oveq2d | ⊢ ( 𝜑  →  ( 1 ..^ ( 𝐼  +  ( 𝑀  −  𝐼 ) ) )  =  ( 1 ..^ 𝑀 ) ) | 
						
							| 44 |  | fzoval | ⊢ ( 𝑀  ∈  ℤ  →  ( 1 ..^ 𝑀 )  =  ( 1 ... ( 𝑀  −  1 ) ) ) | 
						
							| 45 | 35 44 | syl | ⊢ ( 𝜑  →  ( 1 ..^ 𝑀 )  =  ( 1 ... ( 𝑀  −  1 ) ) ) | 
						
							| 46 | 43 45 | eqtrd | ⊢ ( 𝜑  →  ( 1 ..^ ( 𝐼  +  ( 𝑀  −  𝐼 ) ) )  =  ( 1 ... ( 𝑀  −  1 ) ) ) | 
						
							| 47 | 46 | eqcomd | ⊢ ( 𝜑  →  ( 1 ... ( 𝑀  −  1 ) )  =  ( 1 ..^ ( 𝐼  +  ( 𝑀  −  𝐼 ) ) ) ) | 
						
							| 48 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 49 | 2 48 | eleqtrdi | ⊢ ( 𝜑  →  𝐼  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 50 | 2 | nnzd | ⊢ ( 𝜑  →  𝐼  ∈  ℤ ) | 
						
							| 51 | 50 35 | jca | ⊢ ( 𝜑  →  ( 𝐼  ∈  ℤ  ∧  𝑀  ∈  ℤ ) ) | 
						
							| 52 |  | znn0sub | ⊢ ( ( 𝐼  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( 𝐼  ≤  𝑀  ↔  ( 𝑀  −  𝐼 )  ∈  ℕ0 ) ) | 
						
							| 53 | 51 52 | syl | ⊢ ( 𝜑  →  ( 𝐼  ≤  𝑀  ↔  ( 𝑀  −  𝐼 )  ∈  ℕ0 ) ) | 
						
							| 54 | 3 53 | mpbid | ⊢ ( 𝜑  →  ( 𝑀  −  𝐼 )  ∈  ℕ0 ) | 
						
							| 55 |  | fzoun | ⊢ ( ( 𝐼  ∈  ( ℤ≥ ‘ 1 )  ∧  ( 𝑀  −  𝐼 )  ∈  ℕ0 )  →  ( 1 ..^ ( 𝐼  +  ( 𝑀  −  𝐼 ) ) )  =  ( ( 1 ..^ 𝐼 )  ∪  ( 𝐼 ..^ ( 𝐼  +  ( 𝑀  −  𝐼 ) ) ) ) ) | 
						
							| 56 | 49 54 55 | syl2anc | ⊢ ( 𝜑  →  ( 1 ..^ ( 𝐼  +  ( 𝑀  −  𝐼 ) ) )  =  ( ( 1 ..^ 𝐼 )  ∪  ( 𝐼 ..^ ( 𝐼  +  ( 𝑀  −  𝐼 ) ) ) ) ) | 
						
							| 57 | 47 56 | eqtrd | ⊢ ( 𝜑  →  ( 1 ... ( 𝑀  −  1 ) )  =  ( ( 1 ..^ 𝐼 )  ∪  ( 𝐼 ..^ ( 𝐼  +  ( 𝑀  −  𝐼 ) ) ) ) ) | 
						
							| 58 |  | fzoval | ⊢ ( 𝐼  ∈  ℤ  →  ( 1 ..^ 𝐼 )  =  ( 1 ... ( 𝐼  −  1 ) ) ) | 
						
							| 59 | 50 58 | syl | ⊢ ( 𝜑  →  ( 1 ..^ 𝐼 )  =  ( 1 ... ( 𝐼  −  1 ) ) ) | 
						
							| 60 | 42 | oveq2d | ⊢ ( 𝜑  →  ( 𝐼 ..^ ( 𝐼  +  ( 𝑀  −  𝐼 ) ) )  =  ( 𝐼 ..^ 𝑀 ) ) | 
						
							| 61 |  | fzoval | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝐼 ..^ 𝑀 )  =  ( 𝐼 ... ( 𝑀  −  1 ) ) ) | 
						
							| 62 | 35 61 | syl | ⊢ ( 𝜑  →  ( 𝐼 ..^ 𝑀 )  =  ( 𝐼 ... ( 𝑀  −  1 ) ) ) | 
						
							| 63 | 60 62 | eqtrd | ⊢ ( 𝜑  →  ( 𝐼 ..^ ( 𝐼  +  ( 𝑀  −  𝐼 ) ) )  =  ( 𝐼 ... ( 𝑀  −  1 ) ) ) | 
						
							| 64 | 59 63 | uneq12d | ⊢ ( 𝜑  →  ( ( 1 ..^ 𝐼 )  ∪  ( 𝐼 ..^ ( 𝐼  +  ( 𝑀  −  𝐼 ) ) ) )  =  ( ( 1 ... ( 𝐼  −  1 ) )  ∪  ( 𝐼 ... ( 𝑀  −  1 ) ) ) ) | 
						
							| 65 | 57 64 | eqtrd | ⊢ ( 𝜑  →  ( 1 ... ( 𝑀  −  1 ) )  =  ( ( 1 ... ( 𝐼  −  1 ) )  ∪  ( 𝐼 ... ( 𝑀  −  1 ) ) ) ) | 
						
							| 66 | 65 | ineq1d | ⊢ ( 𝜑  →  ( ( 1 ... ( 𝑀  −  1 ) )  ∩  ( 𝑀 ... 𝑀 ) )  =  ( ( ( 1 ... ( 𝐼  −  1 ) )  ∪  ( 𝐼 ... ( 𝑀  −  1 ) ) )  ∩  ( 𝑀 ... 𝑀 ) ) ) | 
						
							| 67 | 66 | eqcomd | ⊢ ( 𝜑  →  ( ( ( 1 ... ( 𝐼  −  1 ) )  ∪  ( 𝐼 ... ( 𝑀  −  1 ) ) )  ∩  ( 𝑀 ... 𝑀 ) )  =  ( ( 1 ... ( 𝑀  −  1 ) )  ∩  ( 𝑀 ... 𝑀 ) ) ) | 
						
							| 68 | 1 | nnred | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 69 | 68 | ltm1d | ⊢ ( 𝜑  →  ( 𝑀  −  1 )  <  𝑀 ) | 
						
							| 70 |  | fzdisj | ⊢ ( ( 𝑀  −  1 )  <  𝑀  →  ( ( 1 ... ( 𝑀  −  1 ) )  ∩  ( 𝑀 ... 𝑀 ) )  =  ∅ ) | 
						
							| 71 | 69 70 | syl | ⊢ ( 𝜑  →  ( ( 1 ... ( 𝑀  −  1 ) )  ∩  ( 𝑀 ... 𝑀 ) )  =  ∅ ) | 
						
							| 72 | 67 71 | eqtrd | ⊢ ( 𝜑  →  ( ( ( 1 ... ( 𝐼  −  1 ) )  ∪  ( 𝐼 ... ( 𝑀  −  1 ) ) )  ∩  ( 𝑀 ... 𝑀 ) )  =  ∅ ) | 
						
							| 73 | 39 72 | eqtrd | ⊢ ( 𝜑  →  ( ( ( 1 ... ( 𝐼  −  1 ) )  ∪  ( 𝐼 ... ( 𝑀  −  1 ) ) )  ∩  { 𝑀 } )  =  ∅ ) | 
						
							| 74 |  | elsng | ⊢ ( 𝑋  ∈  ( 1 ... 𝑀 )  →  ( 𝑋  ∈  { 𝑀 }  ↔  𝑋  =  𝑀 ) ) | 
						
							| 75 | 7 74 | syl | ⊢ ( 𝜑  →  ( 𝑋  ∈  { 𝑀 }  ↔  𝑋  =  𝑀 ) ) | 
						
							| 76 | 8 75 | mpbird | ⊢ ( 𝜑  →  𝑋  ∈  { 𝑀 } ) | 
						
							| 77 | 33 34 73 76 | fvun2d | ⊢ ( 𝜑  →  ( ( ( 𝐶  ∪  𝐷 )  ∪  { 〈 𝑀 ,  𝑀 〉 } ) ‘ 𝑋 )  =  ( { 〈 𝑀 ,  𝑀 〉 } ‘ 𝑋 ) ) | 
						
							| 78 | 77 | eqcomd | ⊢ ( 𝜑  →  ( { 〈 𝑀 ,  𝑀 〉 } ‘ 𝑋 )  =  ( ( ( 𝐶  ∪  𝐷 )  ∪  { 〈 𝑀 ,  𝑀 〉 } ) ‘ 𝑋 ) ) | 
						
							| 79 | 30 78 | eqtrd | ⊢ ( 𝜑  →  ( 𝐵 ‘ 𝑋 )  =  ( ( ( 𝐶  ∪  𝐷 )  ∪  { 〈 𝑀 ,  𝑀 〉 } ) ‘ 𝑋 ) ) |