| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt19.1 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 2 |  | metakunt19.2 | ⊢ ( 𝜑  →  𝐼  ∈  ℕ ) | 
						
							| 3 |  | metakunt19.3 | ⊢ ( 𝜑  →  𝐼  ≤  𝑀 ) | 
						
							| 4 |  | metakunt19.4 | ⊢ 𝐵  =  ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝑀 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  ( 𝑥  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑥  +  ( 1  −  𝐼 ) ) ) ) ) | 
						
							| 5 |  | metakunt19.5 | ⊢ 𝐶  =  ( 𝑥  ∈  ( 1 ... ( 𝐼  −  1 ) )  ↦  ( 𝑥  +  ( 𝑀  −  𝐼 ) ) ) | 
						
							| 6 |  | metakunt19.6 | ⊢ 𝐷  =  ( 𝑥  ∈  ( 𝐼 ... ( 𝑀  −  1 ) )  ↦  ( 𝑥  +  ( 1  −  𝐼 ) ) ) | 
						
							| 7 |  | elfzelz | ⊢ ( 𝑥  ∈  ( 1 ... ( 𝐼  −  1 ) )  →  𝑥  ∈  ℤ ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... ( 𝐼  −  1 ) ) )  →  𝑥  ∈  ℤ ) | 
						
							| 9 | 1 | nnzd | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... ( 𝐼  −  1 ) ) )  →  𝑀  ∈  ℤ ) | 
						
							| 11 | 2 | nnzd | ⊢ ( 𝜑  →  𝐼  ∈  ℤ ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... ( 𝐼  −  1 ) ) )  →  𝐼  ∈  ℤ ) | 
						
							| 13 | 10 12 | zsubcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... ( 𝐼  −  1 ) ) )  →  ( 𝑀  −  𝐼 )  ∈  ℤ ) | 
						
							| 14 | 8 13 | zaddcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... ( 𝐼  −  1 ) ) )  →  ( 𝑥  +  ( 𝑀  −  𝐼 ) )  ∈  ℤ ) | 
						
							| 15 | 14 5 | fmptd | ⊢ ( 𝜑  →  𝐶 : ( 1 ... ( 𝐼  −  1 ) ) ⟶ ℤ ) | 
						
							| 16 | 15 | ffnd | ⊢ ( 𝜑  →  𝐶  Fn  ( 1 ... ( 𝐼  −  1 ) ) ) | 
						
							| 17 |  | elfzelz | ⊢ ( 𝑥  ∈  ( 𝐼 ... ( 𝑀  −  1 ) )  →  𝑥  ∈  ℤ ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐼 ... ( 𝑀  −  1 ) ) )  →  𝑥  ∈  ℤ ) | 
						
							| 19 |  | 1zzd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐼 ... ( 𝑀  −  1 ) ) )  →  1  ∈  ℤ ) | 
						
							| 20 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐼 ... ( 𝑀  −  1 ) ) )  →  𝐼  ∈  ℤ ) | 
						
							| 21 | 19 20 | zsubcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐼 ... ( 𝑀  −  1 ) ) )  →  ( 1  −  𝐼 )  ∈  ℤ ) | 
						
							| 22 | 18 21 | zaddcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐼 ... ( 𝑀  −  1 ) ) )  →  ( 𝑥  +  ( 1  −  𝐼 ) )  ∈  ℤ ) | 
						
							| 23 | 22 6 | fmptd | ⊢ ( 𝜑  →  𝐷 : ( 𝐼 ... ( 𝑀  −  1 ) ) ⟶ ℤ ) | 
						
							| 24 | 23 | ffnd | ⊢ ( 𝜑  →  𝐷  Fn  ( 𝐼 ... ( 𝑀  −  1 ) ) ) | 
						
							| 25 | 1 2 3 | metakunt18 | ⊢ ( 𝜑  →  ( ( ( ( 1 ... ( 𝐼  −  1 ) )  ∩  ( 𝐼 ... ( 𝑀  −  1 ) ) )  =  ∅  ∧  ( ( 1 ... ( 𝐼  −  1 ) )  ∩  { 𝑀 } )  =  ∅  ∧  ( ( 𝐼 ... ( 𝑀  −  1 ) )  ∩  { 𝑀 } )  =  ∅ )  ∧  ( ( ( ( ( 𝑀  −  𝐼 )  +  1 ) ... ( 𝑀  −  1 ) )  ∩  ( 1 ... ( 𝑀  −  𝐼 ) ) )  =  ∅  ∧  ( ( ( ( 𝑀  −  𝐼 )  +  1 ) ... ( 𝑀  −  1 ) )  ∩  { 𝑀 } )  =  ∅  ∧  ( ( 1 ... ( 𝑀  −  𝐼 ) )  ∩  { 𝑀 } )  =  ∅ ) ) ) | 
						
							| 26 | 25 | simpld | ⊢ ( 𝜑  →  ( ( ( 1 ... ( 𝐼  −  1 ) )  ∩  ( 𝐼 ... ( 𝑀  −  1 ) ) )  =  ∅  ∧  ( ( 1 ... ( 𝐼  −  1 ) )  ∩  { 𝑀 } )  =  ∅  ∧  ( ( 𝐼 ... ( 𝑀  −  1 ) )  ∩  { 𝑀 } )  =  ∅ ) ) | 
						
							| 27 | 26 | simp1d | ⊢ ( 𝜑  →  ( ( 1 ... ( 𝐼  −  1 ) )  ∩  ( 𝐼 ... ( 𝑀  −  1 ) ) )  =  ∅ ) | 
						
							| 28 | 16 24 27 | fnund | ⊢ ( 𝜑  →  ( 𝐶  ∪  𝐷 )  Fn  ( ( 1 ... ( 𝐼  −  1 ) )  ∪  ( 𝐼 ... ( 𝑀  −  1 ) ) ) ) | 
						
							| 29 | 16 24 28 | 3jca | ⊢ ( 𝜑  →  ( 𝐶  Fn  ( 1 ... ( 𝐼  −  1 ) )  ∧  𝐷  Fn  ( 𝐼 ... ( 𝑀  −  1 ) )  ∧  ( 𝐶  ∪  𝐷 )  Fn  ( ( 1 ... ( 𝐼  −  1 ) )  ∪  ( 𝐼 ... ( 𝑀  −  1 ) ) ) ) ) | 
						
							| 30 |  | fnsng | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑀  ∈  ℕ )  →  { 〈 𝑀 ,  𝑀 〉 }  Fn  { 𝑀 } ) | 
						
							| 31 | 1 1 30 | syl2anc | ⊢ ( 𝜑  →  { 〈 𝑀 ,  𝑀 〉 }  Fn  { 𝑀 } ) | 
						
							| 32 | 29 31 | jca | ⊢ ( 𝜑  →  ( ( 𝐶  Fn  ( 1 ... ( 𝐼  −  1 ) )  ∧  𝐷  Fn  ( 𝐼 ... ( 𝑀  −  1 ) )  ∧  ( 𝐶  ∪  𝐷 )  Fn  ( ( 1 ... ( 𝐼  −  1 ) )  ∪  ( 𝐼 ... ( 𝑀  −  1 ) ) ) )  ∧  { 〈 𝑀 ,  𝑀 〉 }  Fn  { 𝑀 } ) ) |