Step |
Hyp |
Ref |
Expression |
1 |
|
metakunt19.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
2 |
|
metakunt19.2 |
⊢ ( 𝜑 → 𝐼 ∈ ℕ ) |
3 |
|
metakunt19.3 |
⊢ ( 𝜑 → 𝐼 ≤ 𝑀 ) |
4 |
|
metakunt19.4 |
⊢ 𝐵 = ( 𝑥 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑥 = 𝑀 , 𝑀 , if ( 𝑥 < 𝐼 , ( 𝑥 + ( 𝑀 − 𝐼 ) ) , ( 𝑥 + ( 1 − 𝐼 ) ) ) ) ) |
5 |
|
metakunt19.5 |
⊢ 𝐶 = ( 𝑥 ∈ ( 1 ... ( 𝐼 − 1 ) ) ↦ ( 𝑥 + ( 𝑀 − 𝐼 ) ) ) |
6 |
|
metakunt19.6 |
⊢ 𝐷 = ( 𝑥 ∈ ( 𝐼 ... ( 𝑀 − 1 ) ) ↦ ( 𝑥 + ( 1 − 𝐼 ) ) ) |
7 |
|
elfzelz |
⊢ ( 𝑥 ∈ ( 1 ... ( 𝐼 − 1 ) ) → 𝑥 ∈ ℤ ) |
8 |
7
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( 𝐼 − 1 ) ) ) → 𝑥 ∈ ℤ ) |
9 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( 𝐼 − 1 ) ) ) → 𝑀 ∈ ℤ ) |
11 |
2
|
nnzd |
⊢ ( 𝜑 → 𝐼 ∈ ℤ ) |
12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( 𝐼 − 1 ) ) ) → 𝐼 ∈ ℤ ) |
13 |
10 12
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( 𝐼 − 1 ) ) ) → ( 𝑀 − 𝐼 ) ∈ ℤ ) |
14 |
8 13
|
zaddcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( 𝐼 − 1 ) ) ) → ( 𝑥 + ( 𝑀 − 𝐼 ) ) ∈ ℤ ) |
15 |
14 5
|
fmptd |
⊢ ( 𝜑 → 𝐶 : ( 1 ... ( 𝐼 − 1 ) ) ⟶ ℤ ) |
16 |
15
|
ffnd |
⊢ ( 𝜑 → 𝐶 Fn ( 1 ... ( 𝐼 − 1 ) ) ) |
17 |
|
elfzelz |
⊢ ( 𝑥 ∈ ( 𝐼 ... ( 𝑀 − 1 ) ) → 𝑥 ∈ ℤ ) |
18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ... ( 𝑀 − 1 ) ) ) → 𝑥 ∈ ℤ ) |
19 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ... ( 𝑀 − 1 ) ) ) → 1 ∈ ℤ ) |
20 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ... ( 𝑀 − 1 ) ) ) → 𝐼 ∈ ℤ ) |
21 |
19 20
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ... ( 𝑀 − 1 ) ) ) → ( 1 − 𝐼 ) ∈ ℤ ) |
22 |
18 21
|
zaddcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ... ( 𝑀 − 1 ) ) ) → ( 𝑥 + ( 1 − 𝐼 ) ) ∈ ℤ ) |
23 |
22 6
|
fmptd |
⊢ ( 𝜑 → 𝐷 : ( 𝐼 ... ( 𝑀 − 1 ) ) ⟶ ℤ ) |
24 |
23
|
ffnd |
⊢ ( 𝜑 → 𝐷 Fn ( 𝐼 ... ( 𝑀 − 1 ) ) ) |
25 |
1 2 3
|
metakunt18 |
⊢ ( 𝜑 → ( ( ( ( 1 ... ( 𝐼 − 1 ) ) ∩ ( 𝐼 ... ( 𝑀 − 1 ) ) ) = ∅ ∧ ( ( 1 ... ( 𝐼 − 1 ) ) ∩ { 𝑀 } ) = ∅ ∧ ( ( 𝐼 ... ( 𝑀 − 1 ) ) ∩ { 𝑀 } ) = ∅ ) ∧ ( ( ( ( ( 𝑀 − 𝐼 ) + 1 ) ... ( 𝑀 − 1 ) ) ∩ ( 1 ... ( 𝑀 − 𝐼 ) ) ) = ∅ ∧ ( ( ( ( 𝑀 − 𝐼 ) + 1 ) ... ( 𝑀 − 1 ) ) ∩ { 𝑀 } ) = ∅ ∧ ( ( 1 ... ( 𝑀 − 𝐼 ) ) ∩ { 𝑀 } ) = ∅ ) ) ) |
26 |
25
|
simpld |
⊢ ( 𝜑 → ( ( ( 1 ... ( 𝐼 − 1 ) ) ∩ ( 𝐼 ... ( 𝑀 − 1 ) ) ) = ∅ ∧ ( ( 1 ... ( 𝐼 − 1 ) ) ∩ { 𝑀 } ) = ∅ ∧ ( ( 𝐼 ... ( 𝑀 − 1 ) ) ∩ { 𝑀 } ) = ∅ ) ) |
27 |
26
|
simp1d |
⊢ ( 𝜑 → ( ( 1 ... ( 𝐼 − 1 ) ) ∩ ( 𝐼 ... ( 𝑀 − 1 ) ) ) = ∅ ) |
28 |
16 24 27
|
fnund |
⊢ ( 𝜑 → ( 𝐶 ∪ 𝐷 ) Fn ( ( 1 ... ( 𝐼 − 1 ) ) ∪ ( 𝐼 ... ( 𝑀 − 1 ) ) ) ) |
29 |
16 24 28
|
3jca |
⊢ ( 𝜑 → ( 𝐶 Fn ( 1 ... ( 𝐼 − 1 ) ) ∧ 𝐷 Fn ( 𝐼 ... ( 𝑀 − 1 ) ) ∧ ( 𝐶 ∪ 𝐷 ) Fn ( ( 1 ... ( 𝐼 − 1 ) ) ∪ ( 𝐼 ... ( 𝑀 − 1 ) ) ) ) ) |
30 |
|
fnsng |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑀 ∈ ℕ ) → { 〈 𝑀 , 𝑀 〉 } Fn { 𝑀 } ) |
31 |
1 1 30
|
syl2anc |
⊢ ( 𝜑 → { 〈 𝑀 , 𝑀 〉 } Fn { 𝑀 } ) |
32 |
29 31
|
jca |
⊢ ( 𝜑 → ( ( 𝐶 Fn ( 1 ... ( 𝐼 − 1 ) ) ∧ 𝐷 Fn ( 𝐼 ... ( 𝑀 − 1 ) ) ∧ ( 𝐶 ∪ 𝐷 ) Fn ( ( 1 ... ( 𝐼 − 1 ) ) ∪ ( 𝐼 ... ( 𝑀 − 1 ) ) ) ) ∧ { 〈 𝑀 , 𝑀 〉 } Fn { 𝑀 } ) ) |