| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt21.1 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 2 |  | metakunt21.2 | ⊢ ( 𝜑  →  𝐼  ∈  ℕ ) | 
						
							| 3 |  | metakunt21.3 | ⊢ ( 𝜑  →  𝐼  ≤  𝑀 ) | 
						
							| 4 |  | metakunt21.4 | ⊢ 𝐵  =  ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝑀 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  ( 𝑥  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑥  +  ( 1  −  𝐼 ) ) ) ) ) | 
						
							| 5 |  | metakunt21.5 | ⊢ 𝐶  =  ( 𝑥  ∈  ( 1 ... ( 𝐼  −  1 ) )  ↦  ( 𝑥  +  ( 𝑀  −  𝐼 ) ) ) | 
						
							| 6 |  | metakunt21.6 | ⊢ 𝐷  =  ( 𝑥  ∈  ( 𝐼 ... ( 𝑀  −  1 ) )  ↦  ( 𝑥  +  ( 1  −  𝐼 ) ) ) | 
						
							| 7 |  | metakunt21.7 | ⊢ ( 𝜑  →  𝑋  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 8 |  | metakunt21.8 | ⊢ ( 𝜑  →  ¬  𝑋  =  𝑀 ) | 
						
							| 9 |  | metakunt21.9 | ⊢ ( 𝜑  →  𝑋  <  𝐼 ) | 
						
							| 10 | 4 | a1i | ⊢ ( 𝜑  →  𝐵  =  ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝑀 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  ( 𝑥  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑥  +  ( 1  −  𝐼 ) ) ) ) ) ) | 
						
							| 11 |  | eqeq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  =  𝑀  ↔  𝑋  =  𝑀 ) ) | 
						
							| 12 |  | breq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  <  𝐼  ↔  𝑋  <  𝐼 ) ) | 
						
							| 13 |  | oveq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  +  ( 𝑀  −  𝐼 ) )  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ) | 
						
							| 14 |  | oveq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  +  ( 1  −  𝐼 ) )  =  ( 𝑋  +  ( 1  −  𝐼 ) ) ) | 
						
							| 15 | 12 13 14 | ifbieq12d | ⊢ ( 𝑥  =  𝑋  →  if ( 𝑥  <  𝐼 ,  ( 𝑥  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑥  +  ( 1  −  𝐼 ) ) )  =  if ( 𝑋  <  𝐼 ,  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑋  +  ( 1  −  𝐼 ) ) ) ) | 
						
							| 16 | 11 15 | ifbieq2d | ⊢ ( 𝑥  =  𝑋  →  if ( 𝑥  =  𝑀 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  ( 𝑥  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑥  +  ( 1  −  𝐼 ) ) ) )  =  if ( 𝑋  =  𝑀 ,  𝑀 ,  if ( 𝑋  <  𝐼 ,  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑋  +  ( 1  −  𝐼 ) ) ) ) ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  if ( 𝑥  =  𝑀 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  ( 𝑥  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑥  +  ( 1  −  𝐼 ) ) ) )  =  if ( 𝑋  =  𝑀 ,  𝑀 ,  if ( 𝑋  <  𝐼 ,  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑋  +  ( 1  −  𝐼 ) ) ) ) ) | 
						
							| 18 | 8 | iffalsed | ⊢ ( 𝜑  →  if ( 𝑋  =  𝑀 ,  𝑀 ,  if ( 𝑋  <  𝐼 ,  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑋  +  ( 1  −  𝐼 ) ) ) )  =  if ( 𝑋  <  𝐼 ,  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑋  +  ( 1  −  𝐼 ) ) ) ) | 
						
							| 19 | 9 | iftrued | ⊢ ( 𝜑  →  if ( 𝑋  <  𝐼 ,  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑋  +  ( 1  −  𝐼 ) ) )  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ) | 
						
							| 20 | 18 19 | eqtrd | ⊢ ( 𝜑  →  if ( 𝑋  =  𝑀 ,  𝑀 ,  if ( 𝑋  <  𝐼 ,  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑋  +  ( 1  −  𝐼 ) ) ) )  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  if ( 𝑋  =  𝑀 ,  𝑀 ,  if ( 𝑋  <  𝐼 ,  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑋  +  ( 1  −  𝐼 ) ) ) )  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ) | 
						
							| 22 | 17 21 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  if ( 𝑥  =  𝑀 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  ( 𝑥  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑥  +  ( 1  −  𝐼 ) ) ) )  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ) | 
						
							| 23 | 7 | elfzelzd | ⊢ ( 𝜑  →  𝑋  ∈  ℤ ) | 
						
							| 24 | 1 | nnzd | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 25 | 2 | nnzd | ⊢ ( 𝜑  →  𝐼  ∈  ℤ ) | 
						
							| 26 | 24 25 | zsubcld | ⊢ ( 𝜑  →  ( 𝑀  −  𝐼 )  ∈  ℤ ) | 
						
							| 27 | 23 26 | zaddcld | ⊢ ( 𝜑  →  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  ∈  ℤ ) | 
						
							| 28 | 10 22 7 27 | fvmptd | ⊢ ( 𝜑  →  ( 𝐵 ‘ 𝑋 )  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ) | 
						
							| 29 | 1 2 3 4 5 6 | metakunt19 | ⊢ ( 𝜑  →  ( ( 𝐶  Fn  ( 1 ... ( 𝐼  −  1 ) )  ∧  𝐷  Fn  ( 𝐼 ... ( 𝑀  −  1 ) )  ∧  ( 𝐶  ∪  𝐷 )  Fn  ( ( 1 ... ( 𝐼  −  1 ) )  ∪  ( 𝐼 ... ( 𝑀  −  1 ) ) ) )  ∧  { 〈 𝑀 ,  𝑀 〉 }  Fn  { 𝑀 } ) ) | 
						
							| 30 | 29 | simpld | ⊢ ( 𝜑  →  ( 𝐶  Fn  ( 1 ... ( 𝐼  −  1 ) )  ∧  𝐷  Fn  ( 𝐼 ... ( 𝑀  −  1 ) )  ∧  ( 𝐶  ∪  𝐷 )  Fn  ( ( 1 ... ( 𝐼  −  1 ) )  ∪  ( 𝐼 ... ( 𝑀  −  1 ) ) ) ) ) | 
						
							| 31 | 30 | simp3d | ⊢ ( 𝜑  →  ( 𝐶  ∪  𝐷 )  Fn  ( ( 1 ... ( 𝐼  −  1 ) )  ∪  ( 𝐼 ... ( 𝑀  −  1 ) ) ) ) | 
						
							| 32 | 29 | simprd | ⊢ ( 𝜑  →  { 〈 𝑀 ,  𝑀 〉 }  Fn  { 𝑀 } ) | 
						
							| 33 |  | indir | ⊢ ( ( ( 1 ... ( 𝐼  −  1 ) )  ∪  ( 𝐼 ... ( 𝑀  −  1 ) ) )  ∩  { 𝑀 } )  =  ( ( ( 1 ... ( 𝐼  −  1 ) )  ∩  { 𝑀 } )  ∪  ( ( 𝐼 ... ( 𝑀  −  1 ) )  ∩  { 𝑀 } ) ) | 
						
							| 34 | 33 | a1i | ⊢ ( 𝜑  →  ( ( ( 1 ... ( 𝐼  −  1 ) )  ∪  ( 𝐼 ... ( 𝑀  −  1 ) ) )  ∩  { 𝑀 } )  =  ( ( ( 1 ... ( 𝐼  −  1 ) )  ∩  { 𝑀 } )  ∪  ( ( 𝐼 ... ( 𝑀  −  1 ) )  ∩  { 𝑀 } ) ) ) | 
						
							| 35 | 1 2 3 | metakunt18 | ⊢ ( 𝜑  →  ( ( ( ( 1 ... ( 𝐼  −  1 ) )  ∩  ( 𝐼 ... ( 𝑀  −  1 ) ) )  =  ∅  ∧  ( ( 1 ... ( 𝐼  −  1 ) )  ∩  { 𝑀 } )  =  ∅  ∧  ( ( 𝐼 ... ( 𝑀  −  1 ) )  ∩  { 𝑀 } )  =  ∅ )  ∧  ( ( ( ( ( 𝑀  −  𝐼 )  +  1 ) ... ( 𝑀  −  1 ) )  ∩  ( 1 ... ( 𝑀  −  𝐼 ) ) )  =  ∅  ∧  ( ( ( ( 𝑀  −  𝐼 )  +  1 ) ... ( 𝑀  −  1 ) )  ∩  { 𝑀 } )  =  ∅  ∧  ( ( 1 ... ( 𝑀  −  𝐼 ) )  ∩  { 𝑀 } )  =  ∅ ) ) ) | 
						
							| 36 | 35 | simpld | ⊢ ( 𝜑  →  ( ( ( 1 ... ( 𝐼  −  1 ) )  ∩  ( 𝐼 ... ( 𝑀  −  1 ) ) )  =  ∅  ∧  ( ( 1 ... ( 𝐼  −  1 ) )  ∩  { 𝑀 } )  =  ∅  ∧  ( ( 𝐼 ... ( 𝑀  −  1 ) )  ∩  { 𝑀 } )  =  ∅ ) ) | 
						
							| 37 | 36 | simp2d | ⊢ ( 𝜑  →  ( ( 1 ... ( 𝐼  −  1 ) )  ∩  { 𝑀 } )  =  ∅ ) | 
						
							| 38 | 36 | simp3d | ⊢ ( 𝜑  →  ( ( 𝐼 ... ( 𝑀  −  1 ) )  ∩  { 𝑀 } )  =  ∅ ) | 
						
							| 39 | 37 38 | uneq12d | ⊢ ( 𝜑  →  ( ( ( 1 ... ( 𝐼  −  1 ) )  ∩  { 𝑀 } )  ∪  ( ( 𝐼 ... ( 𝑀  −  1 ) )  ∩  { 𝑀 } ) )  =  ( ∅  ∪  ∅ ) ) | 
						
							| 40 |  | unidm | ⊢ ( ∅  ∪  ∅ )  =  ∅ | 
						
							| 41 | 40 | a1i | ⊢ ( 𝜑  →  ( ∅  ∪  ∅ )  =  ∅ ) | 
						
							| 42 | 39 41 | eqtrd | ⊢ ( 𝜑  →  ( ( ( 1 ... ( 𝐼  −  1 ) )  ∩  { 𝑀 } )  ∪  ( ( 𝐼 ... ( 𝑀  −  1 ) )  ∩  { 𝑀 } ) )  =  ∅ ) | 
						
							| 43 | 34 42 | eqtrd | ⊢ ( 𝜑  →  ( ( ( 1 ... ( 𝐼  −  1 ) )  ∪  ( 𝐼 ... ( 𝑀  −  1 ) ) )  ∩  { 𝑀 } )  =  ∅ ) | 
						
							| 44 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 45 | 25 44 | zsubcld | ⊢ ( 𝜑  →  ( 𝐼  −  1 )  ∈  ℤ ) | 
						
							| 46 |  | elfznn | ⊢ ( 𝑋  ∈  ( 1 ... 𝑀 )  →  𝑋  ∈  ℕ ) | 
						
							| 47 | 7 46 | syl | ⊢ ( 𝜑  →  𝑋  ∈  ℕ ) | 
						
							| 48 | 47 | nnge1d | ⊢ ( 𝜑  →  1  ≤  𝑋 ) | 
						
							| 49 |  | zltlem1 | ⊢ ( ( 𝑋  ∈  ℤ  ∧  𝐼  ∈  ℤ )  →  ( 𝑋  <  𝐼  ↔  𝑋  ≤  ( 𝐼  −  1 ) ) ) | 
						
							| 50 | 23 25 49 | syl2anc | ⊢ ( 𝜑  →  ( 𝑋  <  𝐼  ↔  𝑋  ≤  ( 𝐼  −  1 ) ) ) | 
						
							| 51 | 9 50 | mpbid | ⊢ ( 𝜑  →  𝑋  ≤  ( 𝐼  −  1 ) ) | 
						
							| 52 | 44 45 23 48 51 | elfzd | ⊢ ( 𝜑  →  𝑋  ∈  ( 1 ... ( 𝐼  −  1 ) ) ) | 
						
							| 53 |  | elun1 | ⊢ ( 𝑋  ∈  ( 1 ... ( 𝐼  −  1 ) )  →  𝑋  ∈  ( ( 1 ... ( 𝐼  −  1 ) )  ∪  ( 𝐼 ... ( 𝑀  −  1 ) ) ) ) | 
						
							| 54 | 52 53 | syl | ⊢ ( 𝜑  →  𝑋  ∈  ( ( 1 ... ( 𝐼  −  1 ) )  ∪  ( 𝐼 ... ( 𝑀  −  1 ) ) ) ) | 
						
							| 55 | 31 32 43 54 | fvun1d | ⊢ ( 𝜑  →  ( ( ( 𝐶  ∪  𝐷 )  ∪  { 〈 𝑀 ,  𝑀 〉 } ) ‘ 𝑋 )  =  ( ( 𝐶  ∪  𝐷 ) ‘ 𝑋 ) ) | 
						
							| 56 | 30 | simp1d | ⊢ ( 𝜑  →  𝐶  Fn  ( 1 ... ( 𝐼  −  1 ) ) ) | 
						
							| 57 | 30 | simp2d | ⊢ ( 𝜑  →  𝐷  Fn  ( 𝐼 ... ( 𝑀  −  1 ) ) ) | 
						
							| 58 | 36 | simp1d | ⊢ ( 𝜑  →  ( ( 1 ... ( 𝐼  −  1 ) )  ∩  ( 𝐼 ... ( 𝑀  −  1 ) ) )  =  ∅ ) | 
						
							| 59 | 56 57 58 52 | fvun1d | ⊢ ( 𝜑  →  ( ( 𝐶  ∪  𝐷 ) ‘ 𝑋 )  =  ( 𝐶 ‘ 𝑋 ) ) | 
						
							| 60 | 5 | a1i | ⊢ ( 𝜑  →  𝐶  =  ( 𝑥  ∈  ( 1 ... ( 𝐼  −  1 ) )  ↦  ( 𝑥  +  ( 𝑀  −  𝐼 ) ) ) ) | 
						
							| 61 | 13 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  ( 𝑥  +  ( 𝑀  −  𝐼 ) )  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ) | 
						
							| 62 | 60 61 52 27 | fvmptd | ⊢ ( 𝜑  →  ( 𝐶 ‘ 𝑋 )  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ) | 
						
							| 63 | 59 62 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐶  ∪  𝐷 ) ‘ 𝑋 )  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ) | 
						
							| 64 | 55 63 | eqtrd | ⊢ ( 𝜑  →  ( ( ( 𝐶  ∪  𝐷 )  ∪  { 〈 𝑀 ,  𝑀 〉 } ) ‘ 𝑋 )  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ) | 
						
							| 65 | 64 | eqcomd | ⊢ ( 𝜑  →  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  =  ( ( ( 𝐶  ∪  𝐷 )  ∪  { 〈 𝑀 ,  𝑀 〉 } ) ‘ 𝑋 ) ) | 
						
							| 66 | 28 65 | eqtrd | ⊢ ( 𝜑  →  ( 𝐵 ‘ 𝑋 )  =  ( ( ( 𝐶  ∪  𝐷 )  ∪  { 〈 𝑀 ,  𝑀 〉 } ) ‘ 𝑋 ) ) |