Metamath Proof Explorer


Theorem metakunt23

Description: B coincides on the union of bijections of functions. (Contributed by metakunt, 28-May-2024)

Ref Expression
Hypotheses metakunt23.1 φM
metakunt23.2 φI
metakunt23.3 φIM
metakunt23.4 B=x1Mifx=MMifx<Ix+M-Ix+1-I
metakunt23.5 C=x1I1x+M-I
metakunt23.6 D=xIM1x+1-I
metakunt23.7 φX1M
Assertion metakunt23 φBX=CDMMX

Proof

Step Hyp Ref Expression
1 metakunt23.1 φM
2 metakunt23.2 φI
3 metakunt23.3 φIM
4 metakunt23.4 B=x1Mifx=MMifx<Ix+M-Ix+1-I
5 metakunt23.5 C=x1I1x+M-I
6 metakunt23.6 D=xIM1x+1-I
7 metakunt23.7 φX1M
8 1 adantr φX=MM
9 2 adantr φX=MI
10 3 adantr φX=MIM
11 7 adantr φX=MX1M
12 simpr φX=MX=M
13 8 9 10 4 5 6 11 12 metakunt20 φX=MBX=CDMMX
14 1 ad2antrr φ¬X=MX<IM
15 2 ad2antrr φ¬X=MX<II
16 3 ad2antrr φ¬X=MX<IIM
17 7 ad2antrr φ¬X=MX<IX1M
18 simplr φ¬X=MX<I¬X=M
19 simpr φ¬X=MX<IX<I
20 14 15 16 4 5 6 17 18 19 metakunt21 φ¬X=MX<IBX=CDMMX
21 1 ad2antrr φ¬X=M¬X<IM
22 2 ad2antrr φ¬X=M¬X<II
23 3 ad2antrr φ¬X=M¬X<IIM
24 7 ad2antrr φ¬X=M¬X<IX1M
25 simplr φ¬X=M¬X<I¬X=M
26 simpr φ¬X=M¬X<I¬X<I
27 21 22 23 4 5 6 24 25 26 metakunt22 φ¬X=M¬X<IBX=CDMMX
28 20 27 pm2.61dan φ¬X=MBX=CDMMX
29 13 28 pm2.61dan φBX=CDMMX