Description: B coincides on the union of bijections of functions. (Contributed by metakunt, 28-May-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | metakunt23.1 | |
|
metakunt23.2 | |
||
metakunt23.3 | |
||
metakunt23.4 | |
||
metakunt23.5 | |
||
metakunt23.6 | |
||
metakunt23.7 | |
||
Assertion | metakunt23 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metakunt23.1 | |
|
2 | metakunt23.2 | |
|
3 | metakunt23.3 | |
|
4 | metakunt23.4 | |
|
5 | metakunt23.5 | |
|
6 | metakunt23.6 | |
|
7 | metakunt23.7 | |
|
8 | 1 | adantr | |
9 | 2 | adantr | |
10 | 3 | adantr | |
11 | 7 | adantr | |
12 | simpr | |
|
13 | 8 9 10 4 5 6 11 12 | metakunt20 | |
14 | 1 | ad2antrr | |
15 | 2 | ad2antrr | |
16 | 3 | ad2antrr | |
17 | 7 | ad2antrr | |
18 | simplr | |
|
19 | simpr | |
|
20 | 14 15 16 4 5 6 17 18 19 | metakunt21 | |
21 | 1 | ad2antrr | |
22 | 2 | ad2antrr | |
23 | 3 | ad2antrr | |
24 | 7 | ad2antrr | |
25 | simplr | |
|
26 | simpr | |
|
27 | 21 22 23 4 5 6 24 25 26 | metakunt22 | |
28 | 20 27 | pm2.61dan | |
29 | 13 28 | pm2.61dan | |