| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt24.1 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 2 |  | metakunt24.2 | ⊢ ( 𝜑  →  𝐼  ∈  ℕ ) | 
						
							| 3 |  | metakunt24.3 | ⊢ ( 𝜑  →  𝐼  ≤  𝑀 ) | 
						
							| 4 |  | indir | ⊢ ( ( ( 1 ... ( 𝐼  −  1 ) )  ∪  ( 𝐼 ... ( 𝑀  −  1 ) ) )  ∩  { 𝑀 } )  =  ( ( ( 1 ... ( 𝐼  −  1 ) )  ∩  { 𝑀 } )  ∪  ( ( 𝐼 ... ( 𝑀  −  1 ) )  ∩  { 𝑀 } ) ) | 
						
							| 5 | 4 | a1i | ⊢ ( 𝜑  →  ( ( ( 1 ... ( 𝐼  −  1 ) )  ∪  ( 𝐼 ... ( 𝑀  −  1 ) ) )  ∩  { 𝑀 } )  =  ( ( ( 1 ... ( 𝐼  −  1 ) )  ∩  { 𝑀 } )  ∪  ( ( 𝐼 ... ( 𝑀  −  1 ) )  ∩  { 𝑀 } ) ) ) | 
						
							| 6 | 1 2 3 | metakunt18 | ⊢ ( 𝜑  →  ( ( ( ( 1 ... ( 𝐼  −  1 ) )  ∩  ( 𝐼 ... ( 𝑀  −  1 ) ) )  =  ∅  ∧  ( ( 1 ... ( 𝐼  −  1 ) )  ∩  { 𝑀 } )  =  ∅  ∧  ( ( 𝐼 ... ( 𝑀  −  1 ) )  ∩  { 𝑀 } )  =  ∅ )  ∧  ( ( ( ( ( 𝑀  −  𝐼 )  +  1 ) ... ( 𝑀  −  1 ) )  ∩  ( 1 ... ( 𝑀  −  𝐼 ) ) )  =  ∅  ∧  ( ( ( ( 𝑀  −  𝐼 )  +  1 ) ... ( 𝑀  −  1 ) )  ∩  { 𝑀 } )  =  ∅  ∧  ( ( 1 ... ( 𝑀  −  𝐼 ) )  ∩  { 𝑀 } )  =  ∅ ) ) ) | 
						
							| 7 | 6 | simpld | ⊢ ( 𝜑  →  ( ( ( 1 ... ( 𝐼  −  1 ) )  ∩  ( 𝐼 ... ( 𝑀  −  1 ) ) )  =  ∅  ∧  ( ( 1 ... ( 𝐼  −  1 ) )  ∩  { 𝑀 } )  =  ∅  ∧  ( ( 𝐼 ... ( 𝑀  −  1 ) )  ∩  { 𝑀 } )  =  ∅ ) ) | 
						
							| 8 | 7 | simp2d | ⊢ ( 𝜑  →  ( ( 1 ... ( 𝐼  −  1 ) )  ∩  { 𝑀 } )  =  ∅ ) | 
						
							| 9 | 7 | simp3d | ⊢ ( 𝜑  →  ( ( 𝐼 ... ( 𝑀  −  1 ) )  ∩  { 𝑀 } )  =  ∅ ) | 
						
							| 10 | 8 9 | uneq12d | ⊢ ( 𝜑  →  ( ( ( 1 ... ( 𝐼  −  1 ) )  ∩  { 𝑀 } )  ∪  ( ( 𝐼 ... ( 𝑀  −  1 ) )  ∩  { 𝑀 } ) )  =  ( ∅  ∪  ∅ ) ) | 
						
							| 11 |  | unidm | ⊢ ( ∅  ∪  ∅ )  =  ∅ | 
						
							| 12 | 11 | a1i | ⊢ ( 𝜑  →  ( ∅  ∪  ∅ )  =  ∅ ) | 
						
							| 13 | 10 12 | eqtrd | ⊢ ( 𝜑  →  ( ( ( 1 ... ( 𝐼  −  1 ) )  ∩  { 𝑀 } )  ∪  ( ( 𝐼 ... ( 𝑀  −  1 ) )  ∩  { 𝑀 } ) )  =  ∅ ) | 
						
							| 14 | 5 13 | eqtrd | ⊢ ( 𝜑  →  ( ( ( 1 ... ( 𝐼  −  1 ) )  ∪  ( 𝐼 ... ( 𝑀  −  1 ) ) )  ∩  { 𝑀 } )  =  ∅ ) | 
						
							| 15 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 16 | 1 | nnzd | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 17 | 1 | nnge1d | ⊢ ( 𝜑  →  1  ≤  𝑀 ) | 
						
							| 18 | 1 | nnred | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 19 | 18 | leidd | ⊢ ( 𝜑  →  𝑀  ≤  𝑀 ) | 
						
							| 20 | 15 16 16 17 19 | elfzd | ⊢ ( 𝜑  →  𝑀  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 21 | 20 | fzsplitnd | ⊢ ( 𝜑  →  ( 1 ... 𝑀 )  =  ( ( 1 ... ( 𝑀  −  1 ) )  ∪  ( 𝑀 ... 𝑀 ) ) ) | 
						
							| 22 |  | oveq1 | ⊢ ( 𝐼  =  𝑀  →  ( 𝐼  −  1 )  =  ( 𝑀  −  1 ) ) | 
						
							| 23 | 22 | oveq2d | ⊢ ( 𝐼  =  𝑀  →  ( 1 ... ( 𝐼  −  1 ) )  =  ( 1 ... ( 𝑀  −  1 ) ) ) | 
						
							| 24 |  | oveq1 | ⊢ ( 𝐼  =  𝑀  →  ( 𝐼 ... ( 𝑀  −  1 ) )  =  ( 𝑀 ... ( 𝑀  −  1 ) ) ) | 
						
							| 25 | 23 24 | uneq12d | ⊢ ( 𝐼  =  𝑀  →  ( ( 1 ... ( 𝐼  −  1 ) )  ∪  ( 𝐼 ... ( 𝑀  −  1 ) ) )  =  ( ( 1 ... ( 𝑀  −  1 ) )  ∪  ( 𝑀 ... ( 𝑀  −  1 ) ) ) ) | 
						
							| 26 | 25 | uneq1d | ⊢ ( 𝐼  =  𝑀  →  ( ( ( 1 ... ( 𝐼  −  1 ) )  ∪  ( 𝐼 ... ( 𝑀  −  1 ) ) )  ∪  ( 𝑀 ... 𝑀 ) )  =  ( ( ( 1 ... ( 𝑀  −  1 ) )  ∪  ( 𝑀 ... ( 𝑀  −  1 ) ) )  ∪  ( 𝑀 ... 𝑀 ) ) ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( 𝜑  ∧  𝐼  =  𝑀 )  →  ( ( ( 1 ... ( 𝐼  −  1 ) )  ∪  ( 𝐼 ... ( 𝑀  −  1 ) ) )  ∪  ( 𝑀 ... 𝑀 ) )  =  ( ( ( 1 ... ( 𝑀  −  1 ) )  ∪  ( 𝑀 ... ( 𝑀  −  1 ) ) )  ∪  ( 𝑀 ... 𝑀 ) ) ) | 
						
							| 28 | 18 | ltm1d | ⊢ ( 𝜑  →  ( 𝑀  −  1 )  <  𝑀 ) | 
						
							| 29 | 16 15 | zsubcld | ⊢ ( 𝜑  →  ( 𝑀  −  1 )  ∈  ℤ ) | 
						
							| 30 |  | fzn | ⊢ ( ( 𝑀  ∈  ℤ  ∧  ( 𝑀  −  1 )  ∈  ℤ )  →  ( ( 𝑀  −  1 )  <  𝑀  ↔  ( 𝑀 ... ( 𝑀  −  1 ) )  =  ∅ ) ) | 
						
							| 31 | 16 29 30 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑀  −  1 )  <  𝑀  ↔  ( 𝑀 ... ( 𝑀  −  1 ) )  =  ∅ ) ) | 
						
							| 32 | 28 31 | mpbid | ⊢ ( 𝜑  →  ( 𝑀 ... ( 𝑀  −  1 ) )  =  ∅ ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( 𝜑  ∧  𝐼  =  𝑀 )  →  ( 𝑀 ... ( 𝑀  −  1 ) )  =  ∅ ) | 
						
							| 34 | 33 | uneq2d | ⊢ ( ( 𝜑  ∧  𝐼  =  𝑀 )  →  ( ( 1 ... ( 𝑀  −  1 ) )  ∪  ( 𝑀 ... ( 𝑀  −  1 ) ) )  =  ( ( 1 ... ( 𝑀  −  1 ) )  ∪  ∅ ) ) | 
						
							| 35 |  | un0 | ⊢ ( ( 1 ... ( 𝑀  −  1 ) )  ∪  ∅ )  =  ( 1 ... ( 𝑀  −  1 ) ) | 
						
							| 36 | 35 | a1i | ⊢ ( ( 𝜑  ∧  𝐼  =  𝑀 )  →  ( ( 1 ... ( 𝑀  −  1 ) )  ∪  ∅ )  =  ( 1 ... ( 𝑀  −  1 ) ) ) | 
						
							| 37 | 34 36 | eqtrd | ⊢ ( ( 𝜑  ∧  𝐼  =  𝑀 )  →  ( ( 1 ... ( 𝑀  −  1 ) )  ∪  ( 𝑀 ... ( 𝑀  −  1 ) ) )  =  ( 1 ... ( 𝑀  −  1 ) ) ) | 
						
							| 38 | 37 | uneq1d | ⊢ ( ( 𝜑  ∧  𝐼  =  𝑀 )  →  ( ( ( 1 ... ( 𝑀  −  1 ) )  ∪  ( 𝑀 ... ( 𝑀  −  1 ) ) )  ∪  ( 𝑀 ... 𝑀 ) )  =  ( ( 1 ... ( 𝑀  −  1 ) )  ∪  ( 𝑀 ... 𝑀 ) ) ) | 
						
							| 39 | 27 38 | eqtrd | ⊢ ( ( 𝜑  ∧  𝐼  =  𝑀 )  →  ( ( ( 1 ... ( 𝐼  −  1 ) )  ∪  ( 𝐼 ... ( 𝑀  −  1 ) ) )  ∪  ( 𝑀 ... 𝑀 ) )  =  ( ( 1 ... ( 𝑀  −  1 ) )  ∪  ( 𝑀 ... 𝑀 ) ) ) | 
						
							| 40 | 39 | eqcomd | ⊢ ( ( 𝜑  ∧  𝐼  =  𝑀 )  →  ( ( 1 ... ( 𝑀  −  1 ) )  ∪  ( 𝑀 ... 𝑀 ) )  =  ( ( ( 1 ... ( 𝐼  −  1 ) )  ∪  ( 𝐼 ... ( 𝑀  −  1 ) ) )  ∪  ( 𝑀 ... 𝑀 ) ) ) | 
						
							| 41 | 15 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐼  =  𝑀 )  →  1  ∈  ℤ ) | 
						
							| 42 | 16 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐼  =  𝑀 )  →  𝑀  ∈  ℤ ) | 
						
							| 43 | 42 41 | zsubcld | ⊢ ( ( 𝜑  ∧  ¬  𝐼  =  𝑀 )  →  ( 𝑀  −  1 )  ∈  ℤ ) | 
						
							| 44 | 2 | nnzd | ⊢ ( 𝜑  →  𝐼  ∈  ℤ ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐼  =  𝑀 )  →  𝐼  ∈  ℤ ) | 
						
							| 46 | 2 | nnge1d | ⊢ ( 𝜑  →  1  ≤  𝐼 ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐼  =  𝑀 )  →  1  ≤  𝐼 ) | 
						
							| 48 |  | eqid | ⊢ 𝑀  =  𝑀 | 
						
							| 49 |  | eqeq1 | ⊢ ( 𝑀  =  𝐼  →  ( 𝑀  =  𝑀  ↔  𝐼  =  𝑀 ) ) | 
						
							| 50 | 48 49 | mpbii | ⊢ ( 𝑀  =  𝐼  →  𝐼  =  𝑀 ) | 
						
							| 51 | 50 | necon3bi | ⊢ ( ¬  𝐼  =  𝑀  →  𝑀  ≠  𝐼 ) | 
						
							| 52 | 51 | adantl | ⊢ ( ( 𝜑  ∧  ¬  𝐼  =  𝑀 )  →  𝑀  ≠  𝐼 ) | 
						
							| 53 | 2 | nnred | ⊢ ( 𝜑  →  𝐼  ∈  ℝ ) | 
						
							| 54 | 53 18 3 | leltned | ⊢ ( 𝜑  →  ( 𝐼  <  𝑀  ↔  𝑀  ≠  𝐼 ) ) | 
						
							| 55 | 54 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐼  =  𝑀 )  →  ( 𝐼  <  𝑀  ↔  𝑀  ≠  𝐼 ) ) | 
						
							| 56 | 52 55 | mpbird | ⊢ ( ( 𝜑  ∧  ¬  𝐼  =  𝑀 )  →  𝐼  <  𝑀 ) | 
						
							| 57 |  | zltlem1 | ⊢ ( ( 𝐼  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( 𝐼  <  𝑀  ↔  𝐼  ≤  ( 𝑀  −  1 ) ) ) | 
						
							| 58 | 44 16 57 | syl2anc | ⊢ ( 𝜑  →  ( 𝐼  <  𝑀  ↔  𝐼  ≤  ( 𝑀  −  1 ) ) ) | 
						
							| 59 | 58 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐼  =  𝑀 )  →  ( 𝐼  <  𝑀  ↔  𝐼  ≤  ( 𝑀  −  1 ) ) ) | 
						
							| 60 | 56 59 | mpbid | ⊢ ( ( 𝜑  ∧  ¬  𝐼  =  𝑀 )  →  𝐼  ≤  ( 𝑀  −  1 ) ) | 
						
							| 61 | 41 43 45 47 60 | fzsplitnr | ⊢ ( ( 𝜑  ∧  ¬  𝐼  =  𝑀 )  →  ( 1 ... ( 𝑀  −  1 ) )  =  ( ( 1 ... ( 𝐼  −  1 ) )  ∪  ( 𝐼 ... ( 𝑀  −  1 ) ) ) ) | 
						
							| 62 | 61 | uneq1d | ⊢ ( ( 𝜑  ∧  ¬  𝐼  =  𝑀 )  →  ( ( 1 ... ( 𝑀  −  1 ) )  ∪  ( 𝑀 ... 𝑀 ) )  =  ( ( ( 1 ... ( 𝐼  −  1 ) )  ∪  ( 𝐼 ... ( 𝑀  −  1 ) ) )  ∪  ( 𝑀 ... 𝑀 ) ) ) | 
						
							| 63 | 40 62 | pm2.61dan | ⊢ ( 𝜑  →  ( ( 1 ... ( 𝑀  −  1 ) )  ∪  ( 𝑀 ... 𝑀 ) )  =  ( ( ( 1 ... ( 𝐼  −  1 ) )  ∪  ( 𝐼 ... ( 𝑀  −  1 ) ) )  ∪  ( 𝑀 ... 𝑀 ) ) ) | 
						
							| 64 |  | fzsn | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝑀 ... 𝑀 )  =  { 𝑀 } ) | 
						
							| 65 | 16 64 | syl | ⊢ ( 𝜑  →  ( 𝑀 ... 𝑀 )  =  { 𝑀 } ) | 
						
							| 66 | 65 | uneq2d | ⊢ ( 𝜑  →  ( ( ( 1 ... ( 𝐼  −  1 ) )  ∪  ( 𝐼 ... ( 𝑀  −  1 ) ) )  ∪  ( 𝑀 ... 𝑀 ) )  =  ( ( ( 1 ... ( 𝐼  −  1 ) )  ∪  ( 𝐼 ... ( 𝑀  −  1 ) ) )  ∪  { 𝑀 } ) ) | 
						
							| 67 | 21 63 66 | 3eqtrd | ⊢ ( 𝜑  →  ( 1 ... 𝑀 )  =  ( ( ( 1 ... ( 𝐼  −  1 ) )  ∪  ( 𝐼 ... ( 𝑀  −  1 ) ) )  ∪  { 𝑀 } ) ) | 
						
							| 68 |  | uncom | ⊢ ( ( ( ( 𝑀  −  𝐼 )  +  1 ) ... ( 𝑀  −  1 ) )  ∪  ( 1 ... ( 𝑀  −  𝐼 ) ) )  =  ( ( 1 ... ( 𝑀  −  𝐼 ) )  ∪  ( ( ( 𝑀  −  𝐼 )  +  1 ) ... ( 𝑀  −  1 ) ) ) | 
						
							| 69 | 68 | a1i | ⊢ ( 𝜑  →  ( ( ( ( 𝑀  −  𝐼 )  +  1 ) ... ( 𝑀  −  1 ) )  ∪  ( 1 ... ( 𝑀  −  𝐼 ) ) )  =  ( ( 1 ... ( 𝑀  −  𝐼 ) )  ∪  ( ( ( 𝑀  −  𝐼 )  +  1 ) ... ( 𝑀  −  1 ) ) ) ) | 
						
							| 70 | 69 | uneq1d | ⊢ ( 𝜑  →  ( ( ( ( ( 𝑀  −  𝐼 )  +  1 ) ... ( 𝑀  −  1 ) )  ∪  ( 1 ... ( 𝑀  −  𝐼 ) ) )  ∪  { 𝑀 } )  =  ( ( ( 1 ... ( 𝑀  −  𝐼 ) )  ∪  ( ( ( 𝑀  −  𝐼 )  +  1 ) ... ( 𝑀  −  1 ) ) )  ∪  { 𝑀 } ) ) | 
						
							| 71 | 65 | uneq2d | ⊢ ( 𝜑  →  ( ( ( 1 ... ( 𝑀  −  𝐼 ) )  ∪  ( ( ( 𝑀  −  𝐼 )  +  1 ) ... ( 𝑀  −  1 ) ) )  ∪  ( 𝑀 ... 𝑀 ) )  =  ( ( ( 1 ... ( 𝑀  −  𝐼 ) )  ∪  ( ( ( 𝑀  −  𝐼 )  +  1 ) ... ( 𝑀  −  1 ) ) )  ∪  { 𝑀 } ) ) | 
						
							| 72 | 71 | eqcomd | ⊢ ( 𝜑  →  ( ( ( 1 ... ( 𝑀  −  𝐼 ) )  ∪  ( ( ( 𝑀  −  𝐼 )  +  1 ) ... ( 𝑀  −  1 ) ) )  ∪  { 𝑀 } )  =  ( ( ( 1 ... ( 𝑀  −  𝐼 ) )  ∪  ( ( ( 𝑀  −  𝐼 )  +  1 ) ... ( 𝑀  −  1 ) ) )  ∪  ( 𝑀 ... 𝑀 ) ) ) | 
						
							| 73 |  | fz10 | ⊢ ( 1 ... 0 )  =  ∅ | 
						
							| 74 | 73 | uneq1i | ⊢ ( ( 1 ... 0 )  ∪  ( 1 ... ( 𝑀  −  1 ) ) )  =  ( ∅  ∪  ( 1 ... ( 𝑀  −  1 ) ) ) | 
						
							| 75 | 74 | a1i | ⊢ ( 𝜑  →  ( ( 1 ... 0 )  ∪  ( 1 ... ( 𝑀  −  1 ) ) )  =  ( ∅  ∪  ( 1 ... ( 𝑀  −  1 ) ) ) ) | 
						
							| 76 | 75 | adantr | ⊢ ( ( 𝜑  ∧  𝐼  =  𝑀 )  →  ( ( 1 ... 0 )  ∪  ( 1 ... ( 𝑀  −  1 ) ) )  =  ( ∅  ∪  ( 1 ... ( 𝑀  −  1 ) ) ) ) | 
						
							| 77 |  | uncom | ⊢ ( ( 1 ... ( 𝑀  −  1 ) )  ∪  ∅ )  =  ( ∅  ∪  ( 1 ... ( 𝑀  −  1 ) ) ) | 
						
							| 78 | 77 | eqeq1i | ⊢ ( ( ( 1 ... ( 𝑀  −  1 ) )  ∪  ∅ )  =  ( 1 ... ( 𝑀  −  1 ) )  ↔  ( ∅  ∪  ( 1 ... ( 𝑀  −  1 ) ) )  =  ( 1 ... ( 𝑀  −  1 ) ) ) | 
						
							| 79 | 78 | imbi2i | ⊢ ( ( ( 𝜑  ∧  𝐼  =  𝑀 )  →  ( ( 1 ... ( 𝑀  −  1 ) )  ∪  ∅ )  =  ( 1 ... ( 𝑀  −  1 ) ) )  ↔  ( ( 𝜑  ∧  𝐼  =  𝑀 )  →  ( ∅  ∪  ( 1 ... ( 𝑀  −  1 ) ) )  =  ( 1 ... ( 𝑀  −  1 ) ) ) ) | 
						
							| 80 | 36 79 | mpbi | ⊢ ( ( 𝜑  ∧  𝐼  =  𝑀 )  →  ( ∅  ∪  ( 1 ... ( 𝑀  −  1 ) ) )  =  ( 1 ... ( 𝑀  −  1 ) ) ) | 
						
							| 81 | 76 80 | eqtrd | ⊢ ( ( 𝜑  ∧  𝐼  =  𝑀 )  →  ( ( 1 ... 0 )  ∪  ( 1 ... ( 𝑀  −  1 ) ) )  =  ( 1 ... ( 𝑀  −  1 ) ) ) | 
						
							| 82 | 81 | eqcomd | ⊢ ( ( 𝜑  ∧  𝐼  =  𝑀 )  →  ( 1 ... ( 𝑀  −  1 ) )  =  ( ( 1 ... 0 )  ∪  ( 1 ... ( 𝑀  −  1 ) ) ) ) | 
						
							| 83 |  | oveq2 | ⊢ ( 𝐼  =  𝑀  →  ( 𝑀  −  𝐼 )  =  ( 𝑀  −  𝑀 ) ) | 
						
							| 84 | 83 | adantl | ⊢ ( ( 𝜑  ∧  𝐼  =  𝑀 )  →  ( 𝑀  −  𝐼 )  =  ( 𝑀  −  𝑀 ) ) | 
						
							| 85 | 18 | recnd | ⊢ ( 𝜑  →  𝑀  ∈  ℂ ) | 
						
							| 86 | 85 | subidd | ⊢ ( 𝜑  →  ( 𝑀  −  𝑀 )  =  0 ) | 
						
							| 87 | 86 | adantr | ⊢ ( ( 𝜑  ∧  𝐼  =  𝑀 )  →  ( 𝑀  −  𝑀 )  =  0 ) | 
						
							| 88 | 84 87 | eqtrd | ⊢ ( ( 𝜑  ∧  𝐼  =  𝑀 )  →  ( 𝑀  −  𝐼 )  =  0 ) | 
						
							| 89 | 88 | oveq2d | ⊢ ( ( 𝜑  ∧  𝐼  =  𝑀 )  →  ( 1 ... ( 𝑀  −  𝐼 ) )  =  ( 1 ... 0 ) ) | 
						
							| 90 | 83 | oveq1d | ⊢ ( 𝐼  =  𝑀  →  ( ( 𝑀  −  𝐼 )  +  1 )  =  ( ( 𝑀  −  𝑀 )  +  1 ) ) | 
						
							| 91 | 90 | adantl | ⊢ ( ( 𝜑  ∧  𝐼  =  𝑀 )  →  ( ( 𝑀  −  𝐼 )  +  1 )  =  ( ( 𝑀  −  𝑀 )  +  1 ) ) | 
						
							| 92 | 87 | oveq1d | ⊢ ( ( 𝜑  ∧  𝐼  =  𝑀 )  →  ( ( 𝑀  −  𝑀 )  +  1 )  =  ( 0  +  1 ) ) | 
						
							| 93 | 91 92 | eqtrd | ⊢ ( ( 𝜑  ∧  𝐼  =  𝑀 )  →  ( ( 𝑀  −  𝐼 )  +  1 )  =  ( 0  +  1 ) ) | 
						
							| 94 |  | 1e0p1 | ⊢ 1  =  ( 0  +  1 ) | 
						
							| 95 | 93 94 | eqtr4di | ⊢ ( ( 𝜑  ∧  𝐼  =  𝑀 )  →  ( ( 𝑀  −  𝐼 )  +  1 )  =  1 ) | 
						
							| 96 | 95 | oveq1d | ⊢ ( ( 𝜑  ∧  𝐼  =  𝑀 )  →  ( ( ( 𝑀  −  𝐼 )  +  1 ) ... ( 𝑀  −  1 ) )  =  ( 1 ... ( 𝑀  −  1 ) ) ) | 
						
							| 97 | 89 96 | uneq12d | ⊢ ( ( 𝜑  ∧  𝐼  =  𝑀 )  →  ( ( 1 ... ( 𝑀  −  𝐼 ) )  ∪  ( ( ( 𝑀  −  𝐼 )  +  1 ) ... ( 𝑀  −  1 ) ) )  =  ( ( 1 ... 0 )  ∪  ( 1 ... ( 𝑀  −  1 ) ) ) ) | 
						
							| 98 | 97 | eqcomd | ⊢ ( ( 𝜑  ∧  𝐼  =  𝑀 )  →  ( ( 1 ... 0 )  ∪  ( 1 ... ( 𝑀  −  1 ) ) )  =  ( ( 1 ... ( 𝑀  −  𝐼 ) )  ∪  ( ( ( 𝑀  −  𝐼 )  +  1 ) ... ( 𝑀  −  1 ) ) ) ) | 
						
							| 99 | 82 98 | eqtrd | ⊢ ( ( 𝜑  ∧  𝐼  =  𝑀 )  →  ( 1 ... ( 𝑀  −  1 ) )  =  ( ( 1 ... ( 𝑀  −  𝐼 ) )  ∪  ( ( ( 𝑀  −  𝐼 )  +  1 ) ... ( 𝑀  −  1 ) ) ) ) | 
						
							| 100 | 42 45 | zsubcld | ⊢ ( ( 𝜑  ∧  ¬  𝐼  =  𝑀 )  →  ( 𝑀  −  𝐼 )  ∈  ℤ ) | 
						
							| 101 | 53 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐼  =  𝑀 )  →  𝐼  ∈  ℝ ) | 
						
							| 102 | 18 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐼  =  𝑀 )  →  𝑀  ∈  ℝ ) | 
						
							| 103 |  | 1red | ⊢ ( ( 𝜑  ∧  ¬  𝐼  =  𝑀 )  →  1  ∈  ℝ ) | 
						
							| 104 | 101 102 103 60 | lesubd | ⊢ ( ( 𝜑  ∧  ¬  𝐼  =  𝑀 )  →  1  ≤  ( 𝑀  −  𝐼 ) ) | 
						
							| 105 | 103 101 102 47 | lesub2dd | ⊢ ( ( 𝜑  ∧  ¬  𝐼  =  𝑀 )  →  ( 𝑀  −  𝐼 )  ≤  ( 𝑀  −  1 ) ) | 
						
							| 106 | 41 43 100 104 105 | elfzd | ⊢ ( ( 𝜑  ∧  ¬  𝐼  =  𝑀 )  →  ( 𝑀  −  𝐼 )  ∈  ( 1 ... ( 𝑀  −  1 ) ) ) | 
						
							| 107 |  | fzsplit | ⊢ ( ( 𝑀  −  𝐼 )  ∈  ( 1 ... ( 𝑀  −  1 ) )  →  ( 1 ... ( 𝑀  −  1 ) )  =  ( ( 1 ... ( 𝑀  −  𝐼 ) )  ∪  ( ( ( 𝑀  −  𝐼 )  +  1 ) ... ( 𝑀  −  1 ) ) ) ) | 
						
							| 108 | 106 107 | syl | ⊢ ( ( 𝜑  ∧  ¬  𝐼  =  𝑀 )  →  ( 1 ... ( 𝑀  −  1 ) )  =  ( ( 1 ... ( 𝑀  −  𝐼 ) )  ∪  ( ( ( 𝑀  −  𝐼 )  +  1 ) ... ( 𝑀  −  1 ) ) ) ) | 
						
							| 109 | 99 108 | pm2.61dan | ⊢ ( 𝜑  →  ( 1 ... ( 𝑀  −  1 ) )  =  ( ( 1 ... ( 𝑀  −  𝐼 ) )  ∪  ( ( ( 𝑀  −  𝐼 )  +  1 ) ... ( 𝑀  −  1 ) ) ) ) | 
						
							| 110 | 109 | uneq1d | ⊢ ( 𝜑  →  ( ( 1 ... ( 𝑀  −  1 ) )  ∪  ( 𝑀 ... 𝑀 ) )  =  ( ( ( 1 ... ( 𝑀  −  𝐼 ) )  ∪  ( ( ( 𝑀  −  𝐼 )  +  1 ) ... ( 𝑀  −  1 ) ) )  ∪  ( 𝑀 ... 𝑀 ) ) ) | 
						
							| 111 | 21 110 | eqtrd | ⊢ ( 𝜑  →  ( 1 ... 𝑀 )  =  ( ( ( 1 ... ( 𝑀  −  𝐼 ) )  ∪  ( ( ( 𝑀  −  𝐼 )  +  1 ) ... ( 𝑀  −  1 ) ) )  ∪  ( 𝑀 ... 𝑀 ) ) ) | 
						
							| 112 | 111 | eqcomd | ⊢ ( 𝜑  →  ( ( ( 1 ... ( 𝑀  −  𝐼 ) )  ∪  ( ( ( 𝑀  −  𝐼 )  +  1 ) ... ( 𝑀  −  1 ) ) )  ∪  ( 𝑀 ... 𝑀 ) )  =  ( 1 ... 𝑀 ) ) | 
						
							| 113 | 72 112 | eqtrd | ⊢ ( 𝜑  →  ( ( ( 1 ... ( 𝑀  −  𝐼 ) )  ∪  ( ( ( 𝑀  −  𝐼 )  +  1 ) ... ( 𝑀  −  1 ) ) )  ∪  { 𝑀 } )  =  ( 1 ... 𝑀 ) ) | 
						
							| 114 | 70 113 | eqtrd | ⊢ ( 𝜑  →  ( ( ( ( ( 𝑀  −  𝐼 )  +  1 ) ... ( 𝑀  −  1 ) )  ∪  ( 1 ... ( 𝑀  −  𝐼 ) ) )  ∪  { 𝑀 } )  =  ( 1 ... 𝑀 ) ) | 
						
							| 115 | 114 | eqcomd | ⊢ ( 𝜑  →  ( 1 ... 𝑀 )  =  ( ( ( ( ( 𝑀  −  𝐼 )  +  1 ) ... ( 𝑀  −  1 ) )  ∪  ( 1 ... ( 𝑀  −  𝐼 ) ) )  ∪  { 𝑀 } ) ) | 
						
							| 116 | 14 67 115 | 3jca | ⊢ ( 𝜑  →  ( ( ( ( 1 ... ( 𝐼  −  1 ) )  ∪  ( 𝐼 ... ( 𝑀  −  1 ) ) )  ∩  { 𝑀 } )  =  ∅  ∧  ( 1 ... 𝑀 )  =  ( ( ( 1 ... ( 𝐼  −  1 ) )  ∪  ( 𝐼 ... ( 𝑀  −  1 ) ) )  ∪  { 𝑀 } )  ∧  ( 1 ... 𝑀 )  =  ( ( ( ( ( 𝑀  −  𝐼 )  +  1 ) ... ( 𝑀  −  1 ) )  ∪  ( 1 ... ( 𝑀  −  𝐼 ) ) )  ∪  { 𝑀 } ) ) ) |