| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt24.1 |  |-  ( ph -> M e. NN ) | 
						
							| 2 |  | metakunt24.2 |  |-  ( ph -> I e. NN ) | 
						
							| 3 |  | metakunt24.3 |  |-  ( ph -> I <_ M ) | 
						
							| 4 |  | indir |  |-  ( ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) i^i { M } ) = ( ( ( 1 ... ( I - 1 ) ) i^i { M } ) u. ( ( I ... ( M - 1 ) ) i^i { M } ) ) | 
						
							| 5 | 4 | a1i |  |-  ( ph -> ( ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) i^i { M } ) = ( ( ( 1 ... ( I - 1 ) ) i^i { M } ) u. ( ( I ... ( M - 1 ) ) i^i { M } ) ) ) | 
						
							| 6 | 1 2 3 | metakunt18 |  |-  ( ph -> ( ( ( ( 1 ... ( I - 1 ) ) i^i ( I ... ( M - 1 ) ) ) = (/) /\ ( ( 1 ... ( I - 1 ) ) i^i { M } ) = (/) /\ ( ( I ... ( M - 1 ) ) i^i { M } ) = (/) ) /\ ( ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) i^i ( 1 ... ( M - I ) ) ) = (/) /\ ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) i^i { M } ) = (/) /\ ( ( 1 ... ( M - I ) ) i^i { M } ) = (/) ) ) ) | 
						
							| 7 | 6 | simpld |  |-  ( ph -> ( ( ( 1 ... ( I - 1 ) ) i^i ( I ... ( M - 1 ) ) ) = (/) /\ ( ( 1 ... ( I - 1 ) ) i^i { M } ) = (/) /\ ( ( I ... ( M - 1 ) ) i^i { M } ) = (/) ) ) | 
						
							| 8 | 7 | simp2d |  |-  ( ph -> ( ( 1 ... ( I - 1 ) ) i^i { M } ) = (/) ) | 
						
							| 9 | 7 | simp3d |  |-  ( ph -> ( ( I ... ( M - 1 ) ) i^i { M } ) = (/) ) | 
						
							| 10 | 8 9 | uneq12d |  |-  ( ph -> ( ( ( 1 ... ( I - 1 ) ) i^i { M } ) u. ( ( I ... ( M - 1 ) ) i^i { M } ) ) = ( (/) u. (/) ) ) | 
						
							| 11 |  | unidm |  |-  ( (/) u. (/) ) = (/) | 
						
							| 12 | 11 | a1i |  |-  ( ph -> ( (/) u. (/) ) = (/) ) | 
						
							| 13 | 10 12 | eqtrd |  |-  ( ph -> ( ( ( 1 ... ( I - 1 ) ) i^i { M } ) u. ( ( I ... ( M - 1 ) ) i^i { M } ) ) = (/) ) | 
						
							| 14 | 5 13 | eqtrd |  |-  ( ph -> ( ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) i^i { M } ) = (/) ) | 
						
							| 15 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 16 | 1 | nnzd |  |-  ( ph -> M e. ZZ ) | 
						
							| 17 | 1 | nnge1d |  |-  ( ph -> 1 <_ M ) | 
						
							| 18 | 1 | nnred |  |-  ( ph -> M e. RR ) | 
						
							| 19 | 18 | leidd |  |-  ( ph -> M <_ M ) | 
						
							| 20 | 15 16 16 17 19 | elfzd |  |-  ( ph -> M e. ( 1 ... M ) ) | 
						
							| 21 | 20 | fzsplitnd |  |-  ( ph -> ( 1 ... M ) = ( ( 1 ... ( M - 1 ) ) u. ( M ... M ) ) ) | 
						
							| 22 |  | oveq1 |  |-  ( I = M -> ( I - 1 ) = ( M - 1 ) ) | 
						
							| 23 | 22 | oveq2d |  |-  ( I = M -> ( 1 ... ( I - 1 ) ) = ( 1 ... ( M - 1 ) ) ) | 
						
							| 24 |  | oveq1 |  |-  ( I = M -> ( I ... ( M - 1 ) ) = ( M ... ( M - 1 ) ) ) | 
						
							| 25 | 23 24 | uneq12d |  |-  ( I = M -> ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) = ( ( 1 ... ( M - 1 ) ) u. ( M ... ( M - 1 ) ) ) ) | 
						
							| 26 | 25 | uneq1d |  |-  ( I = M -> ( ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) u. ( M ... M ) ) = ( ( ( 1 ... ( M - 1 ) ) u. ( M ... ( M - 1 ) ) ) u. ( M ... M ) ) ) | 
						
							| 27 | 26 | adantl |  |-  ( ( ph /\ I = M ) -> ( ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) u. ( M ... M ) ) = ( ( ( 1 ... ( M - 1 ) ) u. ( M ... ( M - 1 ) ) ) u. ( M ... M ) ) ) | 
						
							| 28 | 18 | ltm1d |  |-  ( ph -> ( M - 1 ) < M ) | 
						
							| 29 | 16 15 | zsubcld |  |-  ( ph -> ( M - 1 ) e. ZZ ) | 
						
							| 30 |  | fzn |  |-  ( ( M e. ZZ /\ ( M - 1 ) e. ZZ ) -> ( ( M - 1 ) < M <-> ( M ... ( M - 1 ) ) = (/) ) ) | 
						
							| 31 | 16 29 30 | syl2anc |  |-  ( ph -> ( ( M - 1 ) < M <-> ( M ... ( M - 1 ) ) = (/) ) ) | 
						
							| 32 | 28 31 | mpbid |  |-  ( ph -> ( M ... ( M - 1 ) ) = (/) ) | 
						
							| 33 | 32 | adantr |  |-  ( ( ph /\ I = M ) -> ( M ... ( M - 1 ) ) = (/) ) | 
						
							| 34 | 33 | uneq2d |  |-  ( ( ph /\ I = M ) -> ( ( 1 ... ( M - 1 ) ) u. ( M ... ( M - 1 ) ) ) = ( ( 1 ... ( M - 1 ) ) u. (/) ) ) | 
						
							| 35 |  | un0 |  |-  ( ( 1 ... ( M - 1 ) ) u. (/) ) = ( 1 ... ( M - 1 ) ) | 
						
							| 36 | 35 | a1i |  |-  ( ( ph /\ I = M ) -> ( ( 1 ... ( M - 1 ) ) u. (/) ) = ( 1 ... ( M - 1 ) ) ) | 
						
							| 37 | 34 36 | eqtrd |  |-  ( ( ph /\ I = M ) -> ( ( 1 ... ( M - 1 ) ) u. ( M ... ( M - 1 ) ) ) = ( 1 ... ( M - 1 ) ) ) | 
						
							| 38 | 37 | uneq1d |  |-  ( ( ph /\ I = M ) -> ( ( ( 1 ... ( M - 1 ) ) u. ( M ... ( M - 1 ) ) ) u. ( M ... M ) ) = ( ( 1 ... ( M - 1 ) ) u. ( M ... M ) ) ) | 
						
							| 39 | 27 38 | eqtrd |  |-  ( ( ph /\ I = M ) -> ( ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) u. ( M ... M ) ) = ( ( 1 ... ( M - 1 ) ) u. ( M ... M ) ) ) | 
						
							| 40 | 39 | eqcomd |  |-  ( ( ph /\ I = M ) -> ( ( 1 ... ( M - 1 ) ) u. ( M ... M ) ) = ( ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) u. ( M ... M ) ) ) | 
						
							| 41 | 15 | adantr |  |-  ( ( ph /\ -. I = M ) -> 1 e. ZZ ) | 
						
							| 42 | 16 | adantr |  |-  ( ( ph /\ -. I = M ) -> M e. ZZ ) | 
						
							| 43 | 42 41 | zsubcld |  |-  ( ( ph /\ -. I = M ) -> ( M - 1 ) e. ZZ ) | 
						
							| 44 | 2 | nnzd |  |-  ( ph -> I e. ZZ ) | 
						
							| 45 | 44 | adantr |  |-  ( ( ph /\ -. I = M ) -> I e. ZZ ) | 
						
							| 46 | 2 | nnge1d |  |-  ( ph -> 1 <_ I ) | 
						
							| 47 | 46 | adantr |  |-  ( ( ph /\ -. I = M ) -> 1 <_ I ) | 
						
							| 48 |  | eqid |  |-  M = M | 
						
							| 49 |  | eqeq1 |  |-  ( M = I -> ( M = M <-> I = M ) ) | 
						
							| 50 | 48 49 | mpbii |  |-  ( M = I -> I = M ) | 
						
							| 51 | 50 | necon3bi |  |-  ( -. I = M -> M =/= I ) | 
						
							| 52 | 51 | adantl |  |-  ( ( ph /\ -. I = M ) -> M =/= I ) | 
						
							| 53 | 2 | nnred |  |-  ( ph -> I e. RR ) | 
						
							| 54 | 53 18 3 | leltned |  |-  ( ph -> ( I < M <-> M =/= I ) ) | 
						
							| 55 | 54 | adantr |  |-  ( ( ph /\ -. I = M ) -> ( I < M <-> M =/= I ) ) | 
						
							| 56 | 52 55 | mpbird |  |-  ( ( ph /\ -. I = M ) -> I < M ) | 
						
							| 57 |  | zltlem1 |  |-  ( ( I e. ZZ /\ M e. ZZ ) -> ( I < M <-> I <_ ( M - 1 ) ) ) | 
						
							| 58 | 44 16 57 | syl2anc |  |-  ( ph -> ( I < M <-> I <_ ( M - 1 ) ) ) | 
						
							| 59 | 58 | adantr |  |-  ( ( ph /\ -. I = M ) -> ( I < M <-> I <_ ( M - 1 ) ) ) | 
						
							| 60 | 56 59 | mpbid |  |-  ( ( ph /\ -. I = M ) -> I <_ ( M - 1 ) ) | 
						
							| 61 | 41 43 45 47 60 | fzsplitnr |  |-  ( ( ph /\ -. I = M ) -> ( 1 ... ( M - 1 ) ) = ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) ) | 
						
							| 62 | 61 | uneq1d |  |-  ( ( ph /\ -. I = M ) -> ( ( 1 ... ( M - 1 ) ) u. ( M ... M ) ) = ( ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) u. ( M ... M ) ) ) | 
						
							| 63 | 40 62 | pm2.61dan |  |-  ( ph -> ( ( 1 ... ( M - 1 ) ) u. ( M ... M ) ) = ( ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) u. ( M ... M ) ) ) | 
						
							| 64 |  | fzsn |  |-  ( M e. ZZ -> ( M ... M ) = { M } ) | 
						
							| 65 | 16 64 | syl |  |-  ( ph -> ( M ... M ) = { M } ) | 
						
							| 66 | 65 | uneq2d |  |-  ( ph -> ( ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) u. ( M ... M ) ) = ( ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) u. { M } ) ) | 
						
							| 67 | 21 63 66 | 3eqtrd |  |-  ( ph -> ( 1 ... M ) = ( ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) u. { M } ) ) | 
						
							| 68 |  | uncom |  |-  ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) u. ( 1 ... ( M - I ) ) ) = ( ( 1 ... ( M - I ) ) u. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) | 
						
							| 69 | 68 | a1i |  |-  ( ph -> ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) u. ( 1 ... ( M - I ) ) ) = ( ( 1 ... ( M - I ) ) u. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) ) | 
						
							| 70 | 69 | uneq1d |  |-  ( ph -> ( ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) u. ( 1 ... ( M - I ) ) ) u. { M } ) = ( ( ( 1 ... ( M - I ) ) u. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) u. { M } ) ) | 
						
							| 71 | 65 | uneq2d |  |-  ( ph -> ( ( ( 1 ... ( M - I ) ) u. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) u. ( M ... M ) ) = ( ( ( 1 ... ( M - I ) ) u. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) u. { M } ) ) | 
						
							| 72 | 71 | eqcomd |  |-  ( ph -> ( ( ( 1 ... ( M - I ) ) u. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) u. { M } ) = ( ( ( 1 ... ( M - I ) ) u. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) u. ( M ... M ) ) ) | 
						
							| 73 |  | fz10 |  |-  ( 1 ... 0 ) = (/) | 
						
							| 74 | 73 | uneq1i |  |-  ( ( 1 ... 0 ) u. ( 1 ... ( M - 1 ) ) ) = ( (/) u. ( 1 ... ( M - 1 ) ) ) | 
						
							| 75 | 74 | a1i |  |-  ( ph -> ( ( 1 ... 0 ) u. ( 1 ... ( M - 1 ) ) ) = ( (/) u. ( 1 ... ( M - 1 ) ) ) ) | 
						
							| 76 | 75 | adantr |  |-  ( ( ph /\ I = M ) -> ( ( 1 ... 0 ) u. ( 1 ... ( M - 1 ) ) ) = ( (/) u. ( 1 ... ( M - 1 ) ) ) ) | 
						
							| 77 |  | uncom |  |-  ( ( 1 ... ( M - 1 ) ) u. (/) ) = ( (/) u. ( 1 ... ( M - 1 ) ) ) | 
						
							| 78 | 77 | eqeq1i |  |-  ( ( ( 1 ... ( M - 1 ) ) u. (/) ) = ( 1 ... ( M - 1 ) ) <-> ( (/) u. ( 1 ... ( M - 1 ) ) ) = ( 1 ... ( M - 1 ) ) ) | 
						
							| 79 | 78 | imbi2i |  |-  ( ( ( ph /\ I = M ) -> ( ( 1 ... ( M - 1 ) ) u. (/) ) = ( 1 ... ( M - 1 ) ) ) <-> ( ( ph /\ I = M ) -> ( (/) u. ( 1 ... ( M - 1 ) ) ) = ( 1 ... ( M - 1 ) ) ) ) | 
						
							| 80 | 36 79 | mpbi |  |-  ( ( ph /\ I = M ) -> ( (/) u. ( 1 ... ( M - 1 ) ) ) = ( 1 ... ( M - 1 ) ) ) | 
						
							| 81 | 76 80 | eqtrd |  |-  ( ( ph /\ I = M ) -> ( ( 1 ... 0 ) u. ( 1 ... ( M - 1 ) ) ) = ( 1 ... ( M - 1 ) ) ) | 
						
							| 82 | 81 | eqcomd |  |-  ( ( ph /\ I = M ) -> ( 1 ... ( M - 1 ) ) = ( ( 1 ... 0 ) u. ( 1 ... ( M - 1 ) ) ) ) | 
						
							| 83 |  | oveq2 |  |-  ( I = M -> ( M - I ) = ( M - M ) ) | 
						
							| 84 | 83 | adantl |  |-  ( ( ph /\ I = M ) -> ( M - I ) = ( M - M ) ) | 
						
							| 85 | 18 | recnd |  |-  ( ph -> M e. CC ) | 
						
							| 86 | 85 | subidd |  |-  ( ph -> ( M - M ) = 0 ) | 
						
							| 87 | 86 | adantr |  |-  ( ( ph /\ I = M ) -> ( M - M ) = 0 ) | 
						
							| 88 | 84 87 | eqtrd |  |-  ( ( ph /\ I = M ) -> ( M - I ) = 0 ) | 
						
							| 89 | 88 | oveq2d |  |-  ( ( ph /\ I = M ) -> ( 1 ... ( M - I ) ) = ( 1 ... 0 ) ) | 
						
							| 90 | 83 | oveq1d |  |-  ( I = M -> ( ( M - I ) + 1 ) = ( ( M - M ) + 1 ) ) | 
						
							| 91 | 90 | adantl |  |-  ( ( ph /\ I = M ) -> ( ( M - I ) + 1 ) = ( ( M - M ) + 1 ) ) | 
						
							| 92 | 87 | oveq1d |  |-  ( ( ph /\ I = M ) -> ( ( M - M ) + 1 ) = ( 0 + 1 ) ) | 
						
							| 93 | 91 92 | eqtrd |  |-  ( ( ph /\ I = M ) -> ( ( M - I ) + 1 ) = ( 0 + 1 ) ) | 
						
							| 94 |  | 1e0p1 |  |-  1 = ( 0 + 1 ) | 
						
							| 95 | 93 94 | eqtr4di |  |-  ( ( ph /\ I = M ) -> ( ( M - I ) + 1 ) = 1 ) | 
						
							| 96 | 95 | oveq1d |  |-  ( ( ph /\ I = M ) -> ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) = ( 1 ... ( M - 1 ) ) ) | 
						
							| 97 | 89 96 | uneq12d |  |-  ( ( ph /\ I = M ) -> ( ( 1 ... ( M - I ) ) u. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) = ( ( 1 ... 0 ) u. ( 1 ... ( M - 1 ) ) ) ) | 
						
							| 98 | 97 | eqcomd |  |-  ( ( ph /\ I = M ) -> ( ( 1 ... 0 ) u. ( 1 ... ( M - 1 ) ) ) = ( ( 1 ... ( M - I ) ) u. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) ) | 
						
							| 99 | 82 98 | eqtrd |  |-  ( ( ph /\ I = M ) -> ( 1 ... ( M - 1 ) ) = ( ( 1 ... ( M - I ) ) u. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) ) | 
						
							| 100 | 42 45 | zsubcld |  |-  ( ( ph /\ -. I = M ) -> ( M - I ) e. ZZ ) | 
						
							| 101 | 53 | adantr |  |-  ( ( ph /\ -. I = M ) -> I e. RR ) | 
						
							| 102 | 18 | adantr |  |-  ( ( ph /\ -. I = M ) -> M e. RR ) | 
						
							| 103 |  | 1red |  |-  ( ( ph /\ -. I = M ) -> 1 e. RR ) | 
						
							| 104 | 101 102 103 60 | lesubd |  |-  ( ( ph /\ -. I = M ) -> 1 <_ ( M - I ) ) | 
						
							| 105 | 103 101 102 47 | lesub2dd |  |-  ( ( ph /\ -. I = M ) -> ( M - I ) <_ ( M - 1 ) ) | 
						
							| 106 | 41 43 100 104 105 | elfzd |  |-  ( ( ph /\ -. I = M ) -> ( M - I ) e. ( 1 ... ( M - 1 ) ) ) | 
						
							| 107 |  | fzsplit |  |-  ( ( M - I ) e. ( 1 ... ( M - 1 ) ) -> ( 1 ... ( M - 1 ) ) = ( ( 1 ... ( M - I ) ) u. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) ) | 
						
							| 108 | 106 107 | syl |  |-  ( ( ph /\ -. I = M ) -> ( 1 ... ( M - 1 ) ) = ( ( 1 ... ( M - I ) ) u. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) ) | 
						
							| 109 | 99 108 | pm2.61dan |  |-  ( ph -> ( 1 ... ( M - 1 ) ) = ( ( 1 ... ( M - I ) ) u. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) ) | 
						
							| 110 | 109 | uneq1d |  |-  ( ph -> ( ( 1 ... ( M - 1 ) ) u. ( M ... M ) ) = ( ( ( 1 ... ( M - I ) ) u. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) u. ( M ... M ) ) ) | 
						
							| 111 | 21 110 | eqtrd |  |-  ( ph -> ( 1 ... M ) = ( ( ( 1 ... ( M - I ) ) u. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) u. ( M ... M ) ) ) | 
						
							| 112 | 111 | eqcomd |  |-  ( ph -> ( ( ( 1 ... ( M - I ) ) u. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) u. ( M ... M ) ) = ( 1 ... M ) ) | 
						
							| 113 | 72 112 | eqtrd |  |-  ( ph -> ( ( ( 1 ... ( M - I ) ) u. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) u. { M } ) = ( 1 ... M ) ) | 
						
							| 114 | 70 113 | eqtrd |  |-  ( ph -> ( ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) u. ( 1 ... ( M - I ) ) ) u. { M } ) = ( 1 ... M ) ) | 
						
							| 115 | 114 | eqcomd |  |-  ( ph -> ( 1 ... M ) = ( ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) u. ( 1 ... ( M - I ) ) ) u. { M } ) ) | 
						
							| 116 | 14 67 115 | 3jca |  |-  ( ph -> ( ( ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) i^i { M } ) = (/) /\ ( 1 ... M ) = ( ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) u. { M } ) /\ ( 1 ... M ) = ( ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) u. ( 1 ... ( M - I ) ) ) u. { M } ) ) ) |