Step |
Hyp |
Ref |
Expression |
1 |
|
metakunt25.1 |
|- ( ph -> M e. NN ) |
2 |
|
metakunt25.2 |
|- ( ph -> I e. NN ) |
3 |
|
metakunt25.3 |
|- ( ph -> I <_ M ) |
4 |
|
metakunt25.4 |
|- B = ( x e. ( 1 ... M ) |-> if ( x = M , M , if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) ) ) |
5 |
|
eqid |
|- ( x e. ( 1 ... ( I - 1 ) ) |-> ( x + ( M - I ) ) ) = ( x e. ( 1 ... ( I - 1 ) ) |-> ( x + ( M - I ) ) ) |
6 |
1 2 3 5
|
metakunt15 |
|- ( ph -> ( x e. ( 1 ... ( I - 1 ) ) |-> ( x + ( M - I ) ) ) : ( 1 ... ( I - 1 ) ) -1-1-onto-> ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) |
7 |
|
eqid |
|- ( x e. ( I ... ( M - 1 ) ) |-> ( x + ( 1 - I ) ) ) = ( x e. ( I ... ( M - 1 ) ) |-> ( x + ( 1 - I ) ) ) |
8 |
1 2 3 7
|
metakunt16 |
|- ( ph -> ( x e. ( I ... ( M - 1 ) ) |-> ( x + ( 1 - I ) ) ) : ( I ... ( M - 1 ) ) -1-1-onto-> ( 1 ... ( M - I ) ) ) |
9 |
|
f1osng |
|- ( ( M e. NN /\ M e. NN ) -> { <. M , M >. } : { M } -1-1-onto-> { M } ) |
10 |
1 1 9
|
syl2anc |
|- ( ph -> { <. M , M >. } : { M } -1-1-onto-> { M } ) |
11 |
1 2 3
|
metakunt18 |
|- ( ph -> ( ( ( ( 1 ... ( I - 1 ) ) i^i ( I ... ( M - 1 ) ) ) = (/) /\ ( ( 1 ... ( I - 1 ) ) i^i { M } ) = (/) /\ ( ( I ... ( M - 1 ) ) i^i { M } ) = (/) ) /\ ( ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) i^i ( 1 ... ( M - I ) ) ) = (/) /\ ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) i^i { M } ) = (/) /\ ( ( 1 ... ( M - I ) ) i^i { M } ) = (/) ) ) ) |
12 |
11
|
simpld |
|- ( ph -> ( ( ( 1 ... ( I - 1 ) ) i^i ( I ... ( M - 1 ) ) ) = (/) /\ ( ( 1 ... ( I - 1 ) ) i^i { M } ) = (/) /\ ( ( I ... ( M - 1 ) ) i^i { M } ) = (/) ) ) |
13 |
12
|
simp1d |
|- ( ph -> ( ( 1 ... ( I - 1 ) ) i^i ( I ... ( M - 1 ) ) ) = (/) ) |
14 |
12
|
simp2d |
|- ( ph -> ( ( 1 ... ( I - 1 ) ) i^i { M } ) = (/) ) |
15 |
12
|
simp3d |
|- ( ph -> ( ( I ... ( M - 1 ) ) i^i { M } ) = (/) ) |
16 |
11
|
simprd |
|- ( ph -> ( ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) i^i ( 1 ... ( M - I ) ) ) = (/) /\ ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) i^i { M } ) = (/) /\ ( ( 1 ... ( M - I ) ) i^i { M } ) = (/) ) ) |
17 |
16
|
simp1d |
|- ( ph -> ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) i^i ( 1 ... ( M - I ) ) ) = (/) ) |
18 |
16
|
simp2d |
|- ( ph -> ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) i^i { M } ) = (/) ) |
19 |
16
|
simp3d |
|- ( ph -> ( ( 1 ... ( M - I ) ) i^i { M } ) = (/) ) |
20 |
|
eleq1 |
|- ( M = if ( x = M , M , if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) ) -> ( M e. ZZ <-> if ( x = M , M , if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) ) e. ZZ ) ) |
21 |
|
eleq1 |
|- ( if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) = if ( x = M , M , if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) ) -> ( if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) e. ZZ <-> if ( x = M , M , if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) ) e. ZZ ) ) |
22 |
1
|
nnzd |
|- ( ph -> M e. ZZ ) |
23 |
22
|
adantr |
|- ( ( ph /\ x e. ( 1 ... M ) ) -> M e. ZZ ) |
24 |
23
|
adantr |
|- ( ( ( ph /\ x e. ( 1 ... M ) ) /\ x = M ) -> M e. ZZ ) |
25 |
|
eleq1 |
|- ( ( x + ( M - I ) ) = if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) -> ( ( x + ( M - I ) ) e. ZZ <-> if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) e. ZZ ) ) |
26 |
|
eleq1 |
|- ( ( x + ( 1 - I ) ) = if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) -> ( ( x + ( 1 - I ) ) e. ZZ <-> if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) e. ZZ ) ) |
27 |
|
elfzelz |
|- ( x e. ( 1 ... M ) -> x e. ZZ ) |
28 |
27
|
adantl |
|- ( ( ph /\ x e. ( 1 ... M ) ) -> x e. ZZ ) |
29 |
28
|
adantr |
|- ( ( ( ph /\ x e. ( 1 ... M ) ) /\ -. x = M ) -> x e. ZZ ) |
30 |
29
|
adantr |
|- ( ( ( ( ph /\ x e. ( 1 ... M ) ) /\ -. x = M ) /\ x < I ) -> x e. ZZ ) |
31 |
23
|
ad2antrr |
|- ( ( ( ( ph /\ x e. ( 1 ... M ) ) /\ -. x = M ) /\ x < I ) -> M e. ZZ ) |
32 |
2
|
nnzd |
|- ( ph -> I e. ZZ ) |
33 |
32
|
adantr |
|- ( ( ph /\ x e. ( 1 ... M ) ) -> I e. ZZ ) |
34 |
33
|
adantr |
|- ( ( ( ph /\ x e. ( 1 ... M ) ) /\ -. x = M ) -> I e. ZZ ) |
35 |
34
|
adantr |
|- ( ( ( ( ph /\ x e. ( 1 ... M ) ) /\ -. x = M ) /\ x < I ) -> I e. ZZ ) |
36 |
31 35
|
zsubcld |
|- ( ( ( ( ph /\ x e. ( 1 ... M ) ) /\ -. x = M ) /\ x < I ) -> ( M - I ) e. ZZ ) |
37 |
30 36
|
zaddcld |
|- ( ( ( ( ph /\ x e. ( 1 ... M ) ) /\ -. x = M ) /\ x < I ) -> ( x + ( M - I ) ) e. ZZ ) |
38 |
29
|
adantr |
|- ( ( ( ( ph /\ x e. ( 1 ... M ) ) /\ -. x = M ) /\ -. x < I ) -> x e. ZZ ) |
39 |
|
1zzd |
|- ( ( ( ( ph /\ x e. ( 1 ... M ) ) /\ -. x = M ) /\ -. x < I ) -> 1 e. ZZ ) |
40 |
34
|
adantr |
|- ( ( ( ( ph /\ x e. ( 1 ... M ) ) /\ -. x = M ) /\ -. x < I ) -> I e. ZZ ) |
41 |
39 40
|
zsubcld |
|- ( ( ( ( ph /\ x e. ( 1 ... M ) ) /\ -. x = M ) /\ -. x < I ) -> ( 1 - I ) e. ZZ ) |
42 |
38 41
|
zaddcld |
|- ( ( ( ( ph /\ x e. ( 1 ... M ) ) /\ -. x = M ) /\ -. x < I ) -> ( x + ( 1 - I ) ) e. ZZ ) |
43 |
25 26 37 42
|
ifbothda |
|- ( ( ( ph /\ x e. ( 1 ... M ) ) /\ -. x = M ) -> if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) e. ZZ ) |
44 |
20 21 24 43
|
ifbothda |
|- ( ( ph /\ x e. ( 1 ... M ) ) -> if ( x = M , M , if ( x < I , ( x + ( M - I ) ) , ( x + ( 1 - I ) ) ) ) e. ZZ ) |
45 |
44 4
|
fmptd |
|- ( ph -> B : ( 1 ... M ) --> ZZ ) |
46 |
45
|
ffnd |
|- ( ph -> B Fn ( 1 ... M ) ) |
47 |
1 2 3 4 5 7
|
metakunt19 |
|- ( ph -> ( ( ( x e. ( 1 ... ( I - 1 ) ) |-> ( x + ( M - I ) ) ) Fn ( 1 ... ( I - 1 ) ) /\ ( x e. ( I ... ( M - 1 ) ) |-> ( x + ( 1 - I ) ) ) Fn ( I ... ( M - 1 ) ) /\ ( ( x e. ( 1 ... ( I - 1 ) ) |-> ( x + ( M - I ) ) ) u. ( x e. ( I ... ( M - 1 ) ) |-> ( x + ( 1 - I ) ) ) ) Fn ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) ) /\ { <. M , M >. } Fn { M } ) ) |
48 |
47
|
simpld |
|- ( ph -> ( ( x e. ( 1 ... ( I - 1 ) ) |-> ( x + ( M - I ) ) ) Fn ( 1 ... ( I - 1 ) ) /\ ( x e. ( I ... ( M - 1 ) ) |-> ( x + ( 1 - I ) ) ) Fn ( I ... ( M - 1 ) ) /\ ( ( x e. ( 1 ... ( I - 1 ) ) |-> ( x + ( M - I ) ) ) u. ( x e. ( I ... ( M - 1 ) ) |-> ( x + ( 1 - I ) ) ) ) Fn ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) ) ) |
49 |
48
|
simp3d |
|- ( ph -> ( ( x e. ( 1 ... ( I - 1 ) ) |-> ( x + ( M - I ) ) ) u. ( x e. ( I ... ( M - 1 ) ) |-> ( x + ( 1 - I ) ) ) ) Fn ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) ) |
50 |
47
|
simprd |
|- ( ph -> { <. M , M >. } Fn { M } ) |
51 |
1 2 3
|
metakunt24 |
|- ( ph -> ( ( ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) i^i { M } ) = (/) /\ ( 1 ... M ) = ( ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) u. { M } ) /\ ( 1 ... M ) = ( ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) u. ( 1 ... ( M - I ) ) ) u. { M } ) ) ) |
52 |
51
|
simp1d |
|- ( ph -> ( ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) i^i { M } ) = (/) ) |
53 |
49 50 52
|
fnund |
|- ( ph -> ( ( ( x e. ( 1 ... ( I - 1 ) ) |-> ( x + ( M - I ) ) ) u. ( x e. ( I ... ( M - 1 ) ) |-> ( x + ( 1 - I ) ) ) ) u. { <. M , M >. } ) Fn ( ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) u. { M } ) ) |
54 |
51
|
simp2d |
|- ( ph -> ( 1 ... M ) = ( ( ( 1 ... ( I - 1 ) ) u. ( I ... ( M - 1 ) ) ) u. { M } ) ) |
55 |
1
|
adantr |
|- ( ( ph /\ y e. ( 1 ... M ) ) -> M e. NN ) |
56 |
2
|
adantr |
|- ( ( ph /\ y e. ( 1 ... M ) ) -> I e. NN ) |
57 |
3
|
adantr |
|- ( ( ph /\ y e. ( 1 ... M ) ) -> I <_ M ) |
58 |
|
simpr |
|- ( ( ph /\ y e. ( 1 ... M ) ) -> y e. ( 1 ... M ) ) |
59 |
55 56 57 4 5 7 58
|
metakunt23 |
|- ( ( ph /\ y e. ( 1 ... M ) ) -> ( B ` y ) = ( ( ( ( x e. ( 1 ... ( I - 1 ) ) |-> ( x + ( M - I ) ) ) u. ( x e. ( I ... ( M - 1 ) ) |-> ( x + ( 1 - I ) ) ) ) u. { <. M , M >. } ) ` y ) ) |
60 |
46 53 54 59
|
eqfnfv2d2 |
|- ( ph -> B = ( ( ( x e. ( 1 ... ( I - 1 ) ) |-> ( x + ( M - I ) ) ) u. ( x e. ( I ... ( M - 1 ) ) |-> ( x + ( 1 - I ) ) ) ) u. { <. M , M >. } ) ) |
61 |
51
|
simp3d |
|- ( ph -> ( 1 ... M ) = ( ( ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) u. ( 1 ... ( M - I ) ) ) u. { M } ) ) |
62 |
6 8 10 13 14 15 17 18 19 60 54 61
|
metakunt17 |
|- ( ph -> B : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) ) |