| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt15.1 |  |-  ( ph -> M e. NN ) | 
						
							| 2 |  | metakunt15.2 |  |-  ( ph -> I e. NN ) | 
						
							| 3 |  | metakunt15.3 |  |-  ( ph -> I <_ M ) | 
						
							| 4 |  | metakunt15.4 |  |-  F = ( x e. ( 1 ... ( I - 1 ) ) |-> ( x + ( M - I ) ) ) | 
						
							| 5 |  | 1zzd |  |-  ( ( ph /\ x e. ( 1 ... ( I - 1 ) ) ) -> 1 e. ZZ ) | 
						
							| 6 | 2 | nnzd |  |-  ( ph -> I e. ZZ ) | 
						
							| 7 | 6 | adantr |  |-  ( ( ph /\ x e. ( 1 ... ( I - 1 ) ) ) -> I e. ZZ ) | 
						
							| 8 | 7 5 | zsubcld |  |-  ( ( ph /\ x e. ( 1 ... ( I - 1 ) ) ) -> ( I - 1 ) e. ZZ ) | 
						
							| 9 | 1 | nnzd |  |-  ( ph -> M e. ZZ ) | 
						
							| 10 | 9 | adantr |  |-  ( ( ph /\ x e. ( 1 ... ( I - 1 ) ) ) -> M e. ZZ ) | 
						
							| 11 | 10 7 | zsubcld |  |-  ( ( ph /\ x e. ( 1 ... ( I - 1 ) ) ) -> ( M - I ) e. ZZ ) | 
						
							| 12 |  | simpr |  |-  ( ( ph /\ x e. ( 1 ... ( I - 1 ) ) ) -> x e. ( 1 ... ( I - 1 ) ) ) | 
						
							| 13 |  | elfz3 |  |-  ( ( M - I ) e. ZZ -> ( M - I ) e. ( ( M - I ) ... ( M - I ) ) ) | 
						
							| 14 | 11 13 | syl |  |-  ( ( ph /\ x e. ( 1 ... ( I - 1 ) ) ) -> ( M - I ) e. ( ( M - I ) ... ( M - I ) ) ) | 
						
							| 15 | 11 | zcnd |  |-  ( ( ph /\ x e. ( 1 ... ( I - 1 ) ) ) -> ( M - I ) e. CC ) | 
						
							| 16 |  | 1cnd |  |-  ( ( ph /\ x e. ( 1 ... ( I - 1 ) ) ) -> 1 e. CC ) | 
						
							| 17 | 15 16 | addcomd |  |-  ( ( ph /\ x e. ( 1 ... ( I - 1 ) ) ) -> ( ( M - I ) + 1 ) = ( 1 + ( M - I ) ) ) | 
						
							| 18 | 1 | nncnd |  |-  ( ph -> M e. CC ) | 
						
							| 19 | 2 | nncnd |  |-  ( ph -> I e. CC ) | 
						
							| 20 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 21 | 18 19 20 | npncand |  |-  ( ph -> ( ( M - I ) + ( I - 1 ) ) = ( M - 1 ) ) | 
						
							| 22 | 21 | eqcomd |  |-  ( ph -> ( M - 1 ) = ( ( M - I ) + ( I - 1 ) ) ) | 
						
							| 23 | 18 19 | subcld |  |-  ( ph -> ( M - I ) e. CC ) | 
						
							| 24 | 19 20 | subcld |  |-  ( ph -> ( I - 1 ) e. CC ) | 
						
							| 25 | 23 24 | addcomd |  |-  ( ph -> ( ( M - I ) + ( I - 1 ) ) = ( ( I - 1 ) + ( M - I ) ) ) | 
						
							| 26 | 22 25 | eqtrd |  |-  ( ph -> ( M - 1 ) = ( ( I - 1 ) + ( M - I ) ) ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ph /\ x e. ( 1 ... ( I - 1 ) ) ) -> ( M - 1 ) = ( ( I - 1 ) + ( M - I ) ) ) | 
						
							| 28 | 5 8 11 11 12 14 17 27 | fzadd2d |  |-  ( ( ph /\ x e. ( 1 ... ( I - 1 ) ) ) -> ( x + ( M - I ) ) e. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) | 
						
							| 29 |  | 1zzd |  |-  ( ( ph /\ y e. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) -> 1 e. ZZ ) | 
						
							| 30 | 6 | adantr |  |-  ( ( ph /\ y e. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) -> I e. ZZ ) | 
						
							| 31 | 30 29 | zsubcld |  |-  ( ( ph /\ y e. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) -> ( I - 1 ) e. ZZ ) | 
						
							| 32 |  | elfzelz |  |-  ( y e. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) -> y e. ZZ ) | 
						
							| 33 | 32 | adantl |  |-  ( ( ph /\ y e. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) -> y e. ZZ ) | 
						
							| 34 | 9 | adantr |  |-  ( ( ph /\ y e. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) -> M e. ZZ ) | 
						
							| 35 | 34 30 | zsubcld |  |-  ( ( ph /\ y e. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) -> ( M - I ) e. ZZ ) | 
						
							| 36 | 33 35 | zsubcld |  |-  ( ( ph /\ y e. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) -> ( y - ( M - I ) ) e. ZZ ) | 
						
							| 37 |  | elfzle1 |  |-  ( y e. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) -> ( ( M - I ) + 1 ) <_ y ) | 
						
							| 38 | 37 | adantl |  |-  ( ( ph /\ y e. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) -> ( ( M - I ) + 1 ) <_ y ) | 
						
							| 39 | 35 | zred |  |-  ( ( ph /\ y e. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) -> ( M - I ) e. RR ) | 
						
							| 40 |  | 1red |  |-  ( ( ph /\ y e. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) -> 1 e. RR ) | 
						
							| 41 | 33 | zred |  |-  ( ( ph /\ y e. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) -> y e. RR ) | 
						
							| 42 | 39 40 41 | leaddsub2d |  |-  ( ( ph /\ y e. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) -> ( ( ( M - I ) + 1 ) <_ y <-> 1 <_ ( y - ( M - I ) ) ) ) | 
						
							| 43 | 38 42 | mpbid |  |-  ( ( ph /\ y e. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) -> 1 <_ ( y - ( M - I ) ) ) | 
						
							| 44 |  | elfzle2 |  |-  ( y e. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) -> y <_ ( M - 1 ) ) | 
						
							| 45 | 44 | adantl |  |-  ( ( ph /\ y e. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) -> y <_ ( M - 1 ) ) | 
						
							| 46 | 21 | adantr |  |-  ( ( ph /\ y e. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) -> ( ( M - I ) + ( I - 1 ) ) = ( M - 1 ) ) | 
						
							| 47 | 45 46 | breqtrrd |  |-  ( ( ph /\ y e. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) -> y <_ ( ( M - I ) + ( I - 1 ) ) ) | 
						
							| 48 | 31 | zred |  |-  ( ( ph /\ y e. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) -> ( I - 1 ) e. RR ) | 
						
							| 49 | 41 39 48 | lesubadd2d |  |-  ( ( ph /\ y e. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) -> ( ( y - ( M - I ) ) <_ ( I - 1 ) <-> y <_ ( ( M - I ) + ( I - 1 ) ) ) ) | 
						
							| 50 | 47 49 | mpbird |  |-  ( ( ph /\ y e. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) -> ( y - ( M - I ) ) <_ ( I - 1 ) ) | 
						
							| 51 | 29 31 36 43 50 | elfzd |  |-  ( ( ph /\ y e. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) -> ( y - ( M - I ) ) e. ( 1 ... ( I - 1 ) ) ) | 
						
							| 52 |  | eqcom |  |-  ( ( y - ( M - I ) ) = x <-> x = ( y - ( M - I ) ) ) | 
						
							| 53 | 52 | a1i |  |-  ( ( ph /\ ( x e. ( 1 ... ( I - 1 ) ) /\ y e. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) ) -> ( ( y - ( M - I ) ) = x <-> x = ( y - ( M - I ) ) ) ) | 
						
							| 54 | 32 | zcnd |  |-  ( y e. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) -> y e. CC ) | 
						
							| 55 | 54 | ad2antll |  |-  ( ( ph /\ ( x e. ( 1 ... ( I - 1 ) ) /\ y e. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) ) -> y e. CC ) | 
						
							| 56 | 18 | adantr |  |-  ( ( ph /\ ( x e. ( 1 ... ( I - 1 ) ) /\ y e. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) ) -> M e. CC ) | 
						
							| 57 | 19 | adantr |  |-  ( ( ph /\ ( x e. ( 1 ... ( I - 1 ) ) /\ y e. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) ) -> I e. CC ) | 
						
							| 58 | 56 57 | subcld |  |-  ( ( ph /\ ( x e. ( 1 ... ( I - 1 ) ) /\ y e. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) ) -> ( M - I ) e. CC ) | 
						
							| 59 |  | elfznn |  |-  ( x e. ( 1 ... ( I - 1 ) ) -> x e. NN ) | 
						
							| 60 | 59 | nncnd |  |-  ( x e. ( 1 ... ( I - 1 ) ) -> x e. CC ) | 
						
							| 61 | 60 | ad2antrl |  |-  ( ( ph /\ ( x e. ( 1 ... ( I - 1 ) ) /\ y e. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) ) -> x e. CC ) | 
						
							| 62 | 55 58 61 | subaddd |  |-  ( ( ph /\ ( x e. ( 1 ... ( I - 1 ) ) /\ y e. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) ) -> ( ( y - ( M - I ) ) = x <-> ( ( M - I ) + x ) = y ) ) | 
						
							| 63 | 53 62 | bitr3d |  |-  ( ( ph /\ ( x e. ( 1 ... ( I - 1 ) ) /\ y e. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) ) -> ( x = ( y - ( M - I ) ) <-> ( ( M - I ) + x ) = y ) ) | 
						
							| 64 | 58 61 | addcomd |  |-  ( ( ph /\ ( x e. ( 1 ... ( I - 1 ) ) /\ y e. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) ) -> ( ( M - I ) + x ) = ( x + ( M - I ) ) ) | 
						
							| 65 | 64 | eqeq1d |  |-  ( ( ph /\ ( x e. ( 1 ... ( I - 1 ) ) /\ y e. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) ) -> ( ( ( M - I ) + x ) = y <-> ( x + ( M - I ) ) = y ) ) | 
						
							| 66 |  | eqcom |  |-  ( ( x + ( M - I ) ) = y <-> y = ( x + ( M - I ) ) ) | 
						
							| 67 | 66 | a1i |  |-  ( ( ph /\ ( x e. ( 1 ... ( I - 1 ) ) /\ y e. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) ) -> ( ( x + ( M - I ) ) = y <-> y = ( x + ( M - I ) ) ) ) | 
						
							| 68 | 65 67 | bitrd |  |-  ( ( ph /\ ( x e. ( 1 ... ( I - 1 ) ) /\ y e. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) ) -> ( ( ( M - I ) + x ) = y <-> y = ( x + ( M - I ) ) ) ) | 
						
							| 69 | 63 68 | bitrd |  |-  ( ( ph /\ ( x e. ( 1 ... ( I - 1 ) ) /\ y e. ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) ) -> ( x = ( y - ( M - I ) ) <-> y = ( x + ( M - I ) ) ) ) | 
						
							| 70 | 4 28 51 69 | f1o2d |  |-  ( ph -> F : ( 1 ... ( I - 1 ) ) -1-1-onto-> ( ( ( M - I ) + 1 ) ... ( M - 1 ) ) ) |