| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt16.1 |  |-  ( ph -> M e. NN ) | 
						
							| 2 |  | metakunt16.2 |  |-  ( ph -> I e. NN ) | 
						
							| 3 |  | metakunt16.3 |  |-  ( ph -> I <_ M ) | 
						
							| 4 |  | metakunt16.4 |  |-  F = ( x e. ( I ... ( M - 1 ) ) |-> ( x + ( 1 - I ) ) ) | 
						
							| 5 | 2 | nnzd |  |-  ( ph -> I e. ZZ ) | 
						
							| 6 | 5 | adantr |  |-  ( ( ph /\ x e. ( I ... ( M - 1 ) ) ) -> I e. ZZ ) | 
						
							| 7 | 1 | nnzd |  |-  ( ph -> M e. ZZ ) | 
						
							| 8 | 7 | adantr |  |-  ( ( ph /\ x e. ( I ... ( M - 1 ) ) ) -> M e. ZZ ) | 
						
							| 9 |  | 1zzd |  |-  ( ( ph /\ x e. ( I ... ( M - 1 ) ) ) -> 1 e. ZZ ) | 
						
							| 10 | 8 9 | zsubcld |  |-  ( ( ph /\ x e. ( I ... ( M - 1 ) ) ) -> ( M - 1 ) e. ZZ ) | 
						
							| 11 | 9 6 | zsubcld |  |-  ( ( ph /\ x e. ( I ... ( M - 1 ) ) ) -> ( 1 - I ) e. ZZ ) | 
						
							| 12 |  | simpr |  |-  ( ( ph /\ x e. ( I ... ( M - 1 ) ) ) -> x e. ( I ... ( M - 1 ) ) ) | 
						
							| 13 |  | elfz3 |  |-  ( ( 1 - I ) e. ZZ -> ( 1 - I ) e. ( ( 1 - I ) ... ( 1 - I ) ) ) | 
						
							| 14 | 11 13 | syl |  |-  ( ( ph /\ x e. ( I ... ( M - 1 ) ) ) -> ( 1 - I ) e. ( ( 1 - I ) ... ( 1 - I ) ) ) | 
						
							| 15 | 6 | zcnd |  |-  ( ( ph /\ x e. ( I ... ( M - 1 ) ) ) -> I e. CC ) | 
						
							| 16 |  | 1cnd |  |-  ( ( ph /\ x e. ( I ... ( M - 1 ) ) ) -> 1 e. CC ) | 
						
							| 17 | 15 16 | pncan3d |  |-  ( ( ph /\ x e. ( I ... ( M - 1 ) ) ) -> ( I + ( 1 - I ) ) = 1 ) | 
						
							| 18 | 17 | eqcomd |  |-  ( ( ph /\ x e. ( I ... ( M - 1 ) ) ) -> 1 = ( I + ( 1 - I ) ) ) | 
						
							| 19 | 1 | nncnd |  |-  ( ph -> M e. CC ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ph /\ x e. ( I ... ( M - 1 ) ) ) -> M e. CC ) | 
						
							| 21 | 20 16 15 | npncand |  |-  ( ( ph /\ x e. ( I ... ( M - 1 ) ) ) -> ( ( M - 1 ) + ( 1 - I ) ) = ( M - I ) ) | 
						
							| 22 | 21 | eqcomd |  |-  ( ( ph /\ x e. ( I ... ( M - 1 ) ) ) -> ( M - I ) = ( ( M - 1 ) + ( 1 - I ) ) ) | 
						
							| 23 | 6 10 11 11 12 14 18 22 | fzadd2d |  |-  ( ( ph /\ x e. ( I ... ( M - 1 ) ) ) -> ( x + ( 1 - I ) ) e. ( 1 ... ( M - I ) ) ) | 
						
							| 24 | 5 | adantr |  |-  ( ( ph /\ y e. ( 1 ... ( M - I ) ) ) -> I e. ZZ ) | 
						
							| 25 | 7 | adantr |  |-  ( ( ph /\ y e. ( 1 ... ( M - I ) ) ) -> M e. ZZ ) | 
						
							| 26 |  | 1zzd |  |-  ( ( ph /\ y e. ( 1 ... ( M - I ) ) ) -> 1 e. ZZ ) | 
						
							| 27 | 25 26 | zsubcld |  |-  ( ( ph /\ y e. ( 1 ... ( M - I ) ) ) -> ( M - 1 ) e. ZZ ) | 
						
							| 28 |  | elfznn |  |-  ( y e. ( 1 ... ( M - I ) ) -> y e. NN ) | 
						
							| 29 | 28 | adantl |  |-  ( ( ph /\ y e. ( 1 ... ( M - I ) ) ) -> y e. NN ) | 
						
							| 30 |  | nnz |  |-  ( y e. NN -> y e. ZZ ) | 
						
							| 31 | 29 30 | syl |  |-  ( ( ph /\ y e. ( 1 ... ( M - I ) ) ) -> y e. ZZ ) | 
						
							| 32 | 26 24 | zsubcld |  |-  ( ( ph /\ y e. ( 1 ... ( M - I ) ) ) -> ( 1 - I ) e. ZZ ) | 
						
							| 33 | 31 32 | zsubcld |  |-  ( ( ph /\ y e. ( 1 ... ( M - I ) ) ) -> ( y - ( 1 - I ) ) e. ZZ ) | 
						
							| 34 | 24 | zred |  |-  ( ( ph /\ y e. ( 1 ... ( M - I ) ) ) -> I e. RR ) | 
						
							| 35 | 34 | recnd |  |-  ( ( ph /\ y e. ( 1 ... ( M - I ) ) ) -> I e. CC ) | 
						
							| 36 |  | 1cnd |  |-  ( ( ph /\ y e. ( 1 ... ( M - I ) ) ) -> 1 e. CC ) | 
						
							| 37 | 35 36 | pncan3d |  |-  ( ( ph /\ y e. ( 1 ... ( M - I ) ) ) -> ( I + ( 1 - I ) ) = 1 ) | 
						
							| 38 | 28 | nnge1d |  |-  ( y e. ( 1 ... ( M - I ) ) -> 1 <_ y ) | 
						
							| 39 | 38 | adantl |  |-  ( ( ph /\ y e. ( 1 ... ( M - I ) ) ) -> 1 <_ y ) | 
						
							| 40 | 37 39 | eqbrtrd |  |-  ( ( ph /\ y e. ( 1 ... ( M - I ) ) ) -> ( I + ( 1 - I ) ) <_ y ) | 
						
							| 41 |  | 1red |  |-  ( ( ph /\ y e. ( 1 ... ( M - I ) ) ) -> 1 e. RR ) | 
						
							| 42 | 41 34 | resubcld |  |-  ( ( ph /\ y e. ( 1 ... ( M - I ) ) ) -> ( 1 - I ) e. RR ) | 
						
							| 43 | 29 | nnred |  |-  ( ( ph /\ y e. ( 1 ... ( M - I ) ) ) -> y e. RR ) | 
						
							| 44 | 34 42 43 | 3jca |  |-  ( ( ph /\ y e. ( 1 ... ( M - I ) ) ) -> ( I e. RR /\ ( 1 - I ) e. RR /\ y e. RR ) ) | 
						
							| 45 |  | leaddsub |  |-  ( ( I e. RR /\ ( 1 - I ) e. RR /\ y e. RR ) -> ( ( I + ( 1 - I ) ) <_ y <-> I <_ ( y - ( 1 - I ) ) ) ) | 
						
							| 46 | 44 45 | syl |  |-  ( ( ph /\ y e. ( 1 ... ( M - I ) ) ) -> ( ( I + ( 1 - I ) ) <_ y <-> I <_ ( y - ( 1 - I ) ) ) ) | 
						
							| 47 | 40 46 | mpbid |  |-  ( ( ph /\ y e. ( 1 ... ( M - I ) ) ) -> I <_ ( y - ( 1 - I ) ) ) | 
						
							| 48 |  | elfzle2 |  |-  ( y e. ( 1 ... ( M - I ) ) -> y <_ ( M - I ) ) | 
						
							| 49 | 48 | adantl |  |-  ( ( ph /\ y e. ( 1 ... ( M - I ) ) ) -> y <_ ( M - I ) ) | 
						
							| 50 | 19 | adantr |  |-  ( ( ph /\ y e. ( 1 ... ( M - I ) ) ) -> M e. CC ) | 
						
							| 51 | 24 | zcnd |  |-  ( ( ph /\ y e. ( 1 ... ( M - I ) ) ) -> I e. CC ) | 
						
							| 52 | 50 36 51 | npncand |  |-  ( ( ph /\ y e. ( 1 ... ( M - I ) ) ) -> ( ( M - 1 ) + ( 1 - I ) ) = ( M - I ) ) | 
						
							| 53 | 49 52 | breqtrrd |  |-  ( ( ph /\ y e. ( 1 ... ( M - I ) ) ) -> y <_ ( ( M - 1 ) + ( 1 - I ) ) ) | 
						
							| 54 | 32 | zred |  |-  ( ( ph /\ y e. ( 1 ... ( M - I ) ) ) -> ( 1 - I ) e. RR ) | 
						
							| 55 | 27 | zred |  |-  ( ( ph /\ y e. ( 1 ... ( M - I ) ) ) -> ( M - 1 ) e. RR ) | 
						
							| 56 | 43 54 55 | lesubaddd |  |-  ( ( ph /\ y e. ( 1 ... ( M - I ) ) ) -> ( ( y - ( 1 - I ) ) <_ ( M - 1 ) <-> y <_ ( ( M - 1 ) + ( 1 - I ) ) ) ) | 
						
							| 57 | 53 56 | mpbird |  |-  ( ( ph /\ y e. ( 1 ... ( M - I ) ) ) -> ( y - ( 1 - I ) ) <_ ( M - 1 ) ) | 
						
							| 58 | 24 27 33 47 57 | elfzd |  |-  ( ( ph /\ y e. ( 1 ... ( M - I ) ) ) -> ( y - ( 1 - I ) ) e. ( I ... ( M - 1 ) ) ) | 
						
							| 59 |  | 1cnd |  |-  ( ( ph /\ ( x e. ( I ... ( M - 1 ) ) /\ y e. ( 1 ... ( M - I ) ) ) ) -> 1 e. CC ) | 
						
							| 60 | 35 | adantrl |  |-  ( ( ph /\ ( x e. ( I ... ( M - 1 ) ) /\ y e. ( 1 ... ( M - I ) ) ) ) -> I e. CC ) | 
						
							| 61 | 59 60 | subcld |  |-  ( ( ph /\ ( x e. ( I ... ( M - 1 ) ) /\ y e. ( 1 ... ( M - I ) ) ) ) -> ( 1 - I ) e. CC ) | 
						
							| 62 |  | elfzelz |  |-  ( x e. ( I ... ( M - 1 ) ) -> x e. ZZ ) | 
						
							| 63 | 62 | ad2antrl |  |-  ( ( ph /\ ( x e. ( I ... ( M - 1 ) ) /\ y e. ( 1 ... ( M - I ) ) ) ) -> x e. ZZ ) | 
						
							| 64 |  | zcn |  |-  ( x e. ZZ -> x e. CC ) | 
						
							| 65 | 63 64 | syl |  |-  ( ( ph /\ ( x e. ( I ... ( M - 1 ) ) /\ y e. ( 1 ... ( M - I ) ) ) ) -> x e. CC ) | 
						
							| 66 | 29 | adantrl |  |-  ( ( ph /\ ( x e. ( I ... ( M - 1 ) ) /\ y e. ( 1 ... ( M - I ) ) ) ) -> y e. NN ) | 
						
							| 67 |  | nncn |  |-  ( y e. NN -> y e. CC ) | 
						
							| 68 | 66 67 | syl |  |-  ( ( ph /\ ( x e. ( I ... ( M - 1 ) ) /\ y e. ( 1 ... ( M - I ) ) ) ) -> y e. CC ) | 
						
							| 69 | 61 65 68 | addrsub |  |-  ( ( ph /\ ( x e. ( I ... ( M - 1 ) ) /\ y e. ( 1 ... ( M - I ) ) ) ) -> ( ( ( 1 - I ) + x ) = y <-> x = ( y - ( 1 - I ) ) ) ) | 
						
							| 70 | 69 | bicomd |  |-  ( ( ph /\ ( x e. ( I ... ( M - 1 ) ) /\ y e. ( 1 ... ( M - I ) ) ) ) -> ( x = ( y - ( 1 - I ) ) <-> ( ( 1 - I ) + x ) = y ) ) | 
						
							| 71 | 61 65 | addcomd |  |-  ( ( ph /\ ( x e. ( I ... ( M - 1 ) ) /\ y e. ( 1 ... ( M - I ) ) ) ) -> ( ( 1 - I ) + x ) = ( x + ( 1 - I ) ) ) | 
						
							| 72 | 71 | eqeq1d |  |-  ( ( ph /\ ( x e. ( I ... ( M - 1 ) ) /\ y e. ( 1 ... ( M - I ) ) ) ) -> ( ( ( 1 - I ) + x ) = y <-> ( x + ( 1 - I ) ) = y ) ) | 
						
							| 73 |  | eqcom |  |-  ( ( x + ( 1 - I ) ) = y <-> y = ( x + ( 1 - I ) ) ) | 
						
							| 74 | 73 | a1i |  |-  ( ( ph /\ ( x e. ( I ... ( M - 1 ) ) /\ y e. ( 1 ... ( M - I ) ) ) ) -> ( ( x + ( 1 - I ) ) = y <-> y = ( x + ( 1 - I ) ) ) ) | 
						
							| 75 | 72 74 | bitrd |  |-  ( ( ph /\ ( x e. ( I ... ( M - 1 ) ) /\ y e. ( 1 ... ( M - I ) ) ) ) -> ( ( ( 1 - I ) + x ) = y <-> y = ( x + ( 1 - I ) ) ) ) | 
						
							| 76 | 70 75 | bitrd |  |-  ( ( ph /\ ( x e. ( I ... ( M - 1 ) ) /\ y e. ( 1 ... ( M - I ) ) ) ) -> ( x = ( y - ( 1 - I ) ) <-> y = ( x + ( 1 - I ) ) ) ) | 
						
							| 77 | 4 23 58 76 | f1o2d |  |-  ( ph -> F : ( I ... ( M - 1 ) ) -1-1-onto-> ( 1 ... ( M - I ) ) ) |