Step |
Hyp |
Ref |
Expression |
1 |
|
metakunt16.1 |
|
2 |
|
metakunt16.2 |
|
3 |
|
metakunt16.3 |
|
4 |
|
metakunt16.4 |
|
5 |
2
|
nnzd |
|
6 |
5
|
adantr |
|
7 |
1
|
nnzd |
|
8 |
7
|
adantr |
|
9 |
|
1zzd |
|
10 |
8 9
|
zsubcld |
|
11 |
9 6
|
zsubcld |
|
12 |
|
simpr |
|
13 |
|
elfz3 |
|
14 |
11 13
|
syl |
|
15 |
6
|
zcnd |
|
16 |
|
1cnd |
|
17 |
15 16
|
pncan3d |
|
18 |
17
|
eqcomd |
|
19 |
1
|
nncnd |
|
20 |
19
|
adantr |
|
21 |
20 16 15
|
npncand |
|
22 |
21
|
eqcomd |
|
23 |
6 10 11 11 12 14 18 22
|
fzadd2d |
|
24 |
5
|
adantr |
|
25 |
7
|
adantr |
|
26 |
|
1zzd |
|
27 |
25 26
|
zsubcld |
|
28 |
|
elfznn |
|
29 |
28
|
adantl |
|
30 |
|
nnz |
|
31 |
29 30
|
syl |
|
32 |
26 24
|
zsubcld |
|
33 |
31 32
|
zsubcld |
|
34 |
24
|
zred |
|
35 |
34
|
recnd |
|
36 |
|
1cnd |
|
37 |
35 36
|
pncan3d |
|
38 |
28
|
nnge1d |
|
39 |
38
|
adantl |
|
40 |
37 39
|
eqbrtrd |
|
41 |
|
1red |
|
42 |
41 34
|
resubcld |
|
43 |
29
|
nnred |
|
44 |
34 42 43
|
3jca |
|
45 |
|
leaddsub |
|
46 |
44 45
|
syl |
|
47 |
40 46
|
mpbid |
|
48 |
|
elfzle2 |
|
49 |
48
|
adantl |
|
50 |
19
|
adantr |
|
51 |
24
|
zcnd |
|
52 |
50 36 51
|
npncand |
|
53 |
49 52
|
breqtrrd |
|
54 |
32
|
zred |
|
55 |
27
|
zred |
|
56 |
43 54 55
|
lesubaddd |
|
57 |
53 56
|
mpbird |
|
58 |
24 27 33 47 57
|
elfzd |
|
59 |
|
1cnd |
|
60 |
35
|
adantrl |
|
61 |
59 60
|
subcld |
|
62 |
|
elfzelz |
|
63 |
62
|
ad2antrl |
|
64 |
|
zcn |
|
65 |
63 64
|
syl |
|
66 |
29
|
adantrl |
|
67 |
|
nncn |
|
68 |
66 67
|
syl |
|
69 |
61 65 68
|
addrsub |
|
70 |
69
|
bicomd |
|
71 |
61 65
|
addcomd |
|
72 |
71
|
eqeq1d |
|
73 |
|
eqcom |
|
74 |
73
|
a1i |
|
75 |
72 74
|
bitrd |
|
76 |
70 75
|
bitrd |
|
77 |
4 23 58 76
|
f1o2d |
|