Description: B is a permutation. (Contributed by metakunt, 28-May-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | metakunt25.1 | |
|
metakunt25.2 | |
||
metakunt25.3 | |
||
metakunt25.4 | |
||
Assertion | metakunt25 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metakunt25.1 | |
|
2 | metakunt25.2 | |
|
3 | metakunt25.3 | |
|
4 | metakunt25.4 | |
|
5 | eqid | |
|
6 | 1 2 3 5 | metakunt15 | |
7 | eqid | |
|
8 | 1 2 3 7 | metakunt16 | |
9 | f1osng | |
|
10 | 1 1 9 | syl2anc | |
11 | 1 2 3 | metakunt18 | |
12 | 11 | simpld | |
13 | 12 | simp1d | |
14 | 12 | simp2d | |
15 | 12 | simp3d | |
16 | 11 | simprd | |
17 | 16 | simp1d | |
18 | 16 | simp2d | |
19 | 16 | simp3d | |
20 | eleq1 | |
|
21 | eleq1 | |
|
22 | 1 | nnzd | |
23 | 22 | adantr | |
24 | 23 | adantr | |
25 | eleq1 | |
|
26 | eleq1 | |
|
27 | elfzelz | |
|
28 | 27 | adantl | |
29 | 28 | adantr | |
30 | 29 | adantr | |
31 | 23 | ad2antrr | |
32 | 2 | nnzd | |
33 | 32 | adantr | |
34 | 33 | adantr | |
35 | 34 | adantr | |
36 | 31 35 | zsubcld | |
37 | 30 36 | zaddcld | |
38 | 29 | adantr | |
39 | 1zzd | |
|
40 | 34 | adantr | |
41 | 39 40 | zsubcld | |
42 | 38 41 | zaddcld | |
43 | 25 26 37 42 | ifbothda | |
44 | 20 21 24 43 | ifbothda | |
45 | 44 4 | fmptd | |
46 | 45 | ffnd | |
47 | 1 2 3 4 5 7 | metakunt19 | |
48 | 47 | simpld | |
49 | 48 | simp3d | |
50 | 47 | simprd | |
51 | 1 2 3 | metakunt24 | |
52 | 51 | simp1d | |
53 | 49 50 52 | fnund | |
54 | 51 | simp2d | |
55 | 1 | adantr | |
56 | 2 | adantr | |
57 | 3 | adantr | |
58 | simpr | |
|
59 | 55 56 57 4 5 7 58 | metakunt23 | |
60 | 46 53 54 59 | eqfnfv2d2 | |
61 | 51 | simp3d | |
62 | 6 8 10 13 14 15 17 18 19 60 54 61 | metakunt17 | |