Metamath Proof Explorer


Theorem metakunt25

Description: B is a permutation. (Contributed by metakunt, 28-May-2024)

Ref Expression
Hypotheses metakunt25.1 φM
metakunt25.2 φI
metakunt25.3 φIM
metakunt25.4 B=x1Mifx=MMifx<Ix+M-Ix+1-I
Assertion metakunt25 φB:1M1-1 onto1M

Proof

Step Hyp Ref Expression
1 metakunt25.1 φM
2 metakunt25.2 φI
3 metakunt25.3 φIM
4 metakunt25.4 B=x1Mifx=MMifx<Ix+M-Ix+1-I
5 eqid x1I1x+M-I=x1I1x+M-I
6 1 2 3 5 metakunt15 φx1I1x+M-I:1I11-1 ontoM-I+1M1
7 eqid xIM1x+1-I=xIM1x+1-I
8 1 2 3 7 metakunt16 φxIM1x+1-I:IM11-1 onto1MI
9 f1osng MMMM:M1-1 ontoM
10 1 1 9 syl2anc φMM:M1-1 ontoM
11 1 2 3 metakunt18 φ1I1IM1=1I1M=IM1M=M-I+1M11MI=M-I+1M1M=1MIM=
12 11 simpld φ1I1IM1=1I1M=IM1M=
13 12 simp1d φ1I1IM1=
14 12 simp2d φ1I1M=
15 12 simp3d φIM1M=
16 11 simprd φM-I+1M11MI=M-I+1M1M=1MIM=
17 16 simp1d φM-I+1M11MI=
18 16 simp2d φM-I+1M1M=
19 16 simp3d φ1MIM=
20 eleq1 M=ifx=MMifx<Ix+M-Ix+1-IMifx=MMifx<Ix+M-Ix+1-I
21 eleq1 ifx<Ix+M-Ix+1-I=ifx=MMifx<Ix+M-Ix+1-Iifx<Ix+M-Ix+1-Iifx=MMifx<Ix+M-Ix+1-I
22 1 nnzd φM
23 22 adantr φx1MM
24 23 adantr φx1Mx=MM
25 eleq1 x+M-I=ifx<Ix+M-Ix+1-Ix+M-Iifx<Ix+M-Ix+1-I
26 eleq1 x+1-I=ifx<Ix+M-Ix+1-Ix+1-Iifx<Ix+M-Ix+1-I
27 elfzelz x1Mx
28 27 adantl φx1Mx
29 28 adantr φx1M¬x=Mx
30 29 adantr φx1M¬x=Mx<Ix
31 23 ad2antrr φx1M¬x=Mx<IM
32 2 nnzd φI
33 32 adantr φx1MI
34 33 adantr φx1M¬x=MI
35 34 adantr φx1M¬x=Mx<II
36 31 35 zsubcld φx1M¬x=Mx<IMI
37 30 36 zaddcld φx1M¬x=Mx<Ix+M-I
38 29 adantr φx1M¬x=M¬x<Ix
39 1zzd φx1M¬x=M¬x<I1
40 34 adantr φx1M¬x=M¬x<II
41 39 40 zsubcld φx1M¬x=M¬x<I1I
42 38 41 zaddcld φx1M¬x=M¬x<Ix+1-I
43 25 26 37 42 ifbothda φx1M¬x=Mifx<Ix+M-Ix+1-I
44 20 21 24 43 ifbothda φx1Mifx=MMifx<Ix+M-Ix+1-I
45 44 4 fmptd φB:1M
46 45 ffnd φBFn1M
47 1 2 3 4 5 7 metakunt19 φx1I1x+M-IFn1I1xIM1x+1-IFnIM1x1I1x+M-IxIM1x+1-IFn1I1IM1MMFnM
48 47 simpld φx1I1x+M-IFn1I1xIM1x+1-IFnIM1x1I1x+M-IxIM1x+1-IFn1I1IM1
49 48 simp3d φx1I1x+M-IxIM1x+1-IFn1I1IM1
50 47 simprd φMMFnM
51 1 2 3 metakunt24 φ1I1IM1M=1M=1I1IM1M1M=M-I+1M11MIM
52 51 simp1d φ1I1IM1M=
53 49 50 52 fnund φx1I1x+M-IxIM1x+1-IMMFn1I1IM1M
54 51 simp2d φ1M=1I1IM1M
55 1 adantr φy1MM
56 2 adantr φy1MI
57 3 adantr φy1MIM
58 simpr φy1My1M
59 55 56 57 4 5 7 58 metakunt23 φy1MBy=x1I1x+M-IxIM1x+1-IMMy
60 46 53 54 59 eqfnfv2d2 φB=x1I1x+M-IxIM1x+1-IMM
61 51 simp3d φ1M=M-I+1M11MIM
62 6 8 10 13 14 15 17 18 19 60 54 61 metakunt17 φB:1M1-1 onto1M