Metamath Proof Explorer


Theorem metakunt26

Description: Construction of one solution of the increment equation system. (Contributed by metakunt, 7-Jul-2024)

Ref Expression
Hypotheses metakunt26.1 φ M
metakunt26.2 φ I
metakunt26.3 φ I M
metakunt26.4 A = x 1 M if x = I M if x < I x x 1
metakunt26.5 C = y 1 M if y = M I if y < I y y + 1
metakunt26.6 B = z 1 M if z = M M if z < I z + M - I z + 1 - I
metakunt26.7 φ X = I
Assertion metakunt26 φ C B A X = X

Proof

Step Hyp Ref Expression
1 metakunt26.1 φ M
2 metakunt26.2 φ I
3 metakunt26.3 φ I M
4 metakunt26.4 A = x 1 M if x = I M if x < I x x 1
5 metakunt26.5 C = y 1 M if y = M I if y < I y y + 1
6 metakunt26.6 B = z 1 M if z = M M if z < I z + M - I z + 1 - I
7 metakunt26.7 φ X = I
8 4 a1i φ A = x 1 M if x = I M if x < I x x 1
9 7 eqeq2d φ x = X x = I
10 simpr φ x = I x = I
11 10 iftrued φ x = I if x = I M if x < I x x 1 = M
12 11 ex φ x = I if x = I M if x < I x x 1 = M
13 9 12 sylbid φ x = X if x = I M if x < I x x 1 = M
14 13 imp φ x = X if x = I M if x < I x x 1 = M
15 1zzd φ 1
16 nnz M M
17 1 16 syl φ M
18 2 nnzd φ I
19 2 nnge1d φ 1 I
20 15 17 18 19 3 elfzd φ I 1 M
21 7 eleq1d φ X 1 M I 1 M
22 20 21 mpbird φ X 1 M
23 8 14 22 1 fvmptd φ A X = M
24 23 fveq2d φ B A X = B M
25 6 a1i φ B = z 1 M if z = M M if z < I z + M - I z + 1 - I
26 simpr φ z = M z = M
27 26 iftrued φ z = M if z = M M if z < I z + M - I z + 1 - I = M
28 1zzd M 1
29 nnge1 M 1 M
30 nnre M M
31 30 leidd M M M
32 28 16 16 29 31 elfzd M M 1 M
33 1 32 syl φ M 1 M
34 25 27 33 1 fvmptd φ B M = M
35 24 34 eqtrd φ B A X = M
36 35 fveq2d φ C B A X = C M
37 5 a1i φ C = y 1 M if y = M I if y < I y y + 1
38 simpr φ y = M y = M
39 38 iftrued φ y = M if y = M I if y < I y y + 1 = I
40 37 39 33 2 fvmptd φ C M = I
41 36 40 eqtrd φ C B A X = I
42 7 eqcomd φ I = X
43 41 42 eqtrd φ C B A X = X