| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt26.1 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 2 |  | metakunt26.2 | ⊢ ( 𝜑  →  𝐼  ∈  ℕ ) | 
						
							| 3 |  | metakunt26.3 | ⊢ ( 𝜑  →  𝐼  ≤  𝑀 ) | 
						
							| 4 |  | metakunt26.4 | ⊢ 𝐴  =  ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) ) ) | 
						
							| 5 |  | metakunt26.5 | ⊢ 𝐶  =  ( 𝑦  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) ) ) | 
						
							| 6 |  | metakunt26.6 | ⊢ 𝐵  =  ( 𝑧  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑧  =  𝑀 ,  𝑀 ,  if ( 𝑧  <  𝐼 ,  ( 𝑧  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑧  +  ( 1  −  𝐼 ) ) ) ) ) | 
						
							| 7 |  | metakunt26.7 | ⊢ ( 𝜑  →  𝑋  =  𝐼 ) | 
						
							| 8 | 4 | a1i | ⊢ ( 𝜑  →  𝐴  =  ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) ) ) ) | 
						
							| 9 | 7 | eqeq2d | ⊢ ( 𝜑  →  ( 𝑥  =  𝑋  ↔  𝑥  =  𝐼 ) ) | 
						
							| 10 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  =  𝐼 )  →  𝑥  =  𝐼 ) | 
						
							| 11 | 10 | iftrued | ⊢ ( ( 𝜑  ∧  𝑥  =  𝐼 )  →  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) )  =  𝑀 ) | 
						
							| 12 | 11 | ex | ⊢ ( 𝜑  →  ( 𝑥  =  𝐼  →  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) )  =  𝑀 ) ) | 
						
							| 13 | 9 12 | sylbid | ⊢ ( 𝜑  →  ( 𝑥  =  𝑋  →  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) )  =  𝑀 ) ) | 
						
							| 14 | 13 | imp | ⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) )  =  𝑀 ) | 
						
							| 15 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 16 |  | nnz | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℤ ) | 
						
							| 17 | 1 16 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 18 | 2 | nnzd | ⊢ ( 𝜑  →  𝐼  ∈  ℤ ) | 
						
							| 19 | 2 | nnge1d | ⊢ ( 𝜑  →  1  ≤  𝐼 ) | 
						
							| 20 | 15 17 18 19 3 | elfzd | ⊢ ( 𝜑  →  𝐼  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 21 | 7 | eleq1d | ⊢ ( 𝜑  →  ( 𝑋  ∈  ( 1 ... 𝑀 )  ↔  𝐼  ∈  ( 1 ... 𝑀 ) ) ) | 
						
							| 22 | 20 21 | mpbird | ⊢ ( 𝜑  →  𝑋  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 23 | 8 14 22 1 | fvmptd | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑋 )  =  𝑀 ) | 
						
							| 24 | 23 | fveq2d | ⊢ ( 𝜑  →  ( 𝐵 ‘ ( 𝐴 ‘ 𝑋 ) )  =  ( 𝐵 ‘ 𝑀 ) ) | 
						
							| 25 | 6 | a1i | ⊢ ( 𝜑  →  𝐵  =  ( 𝑧  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑧  =  𝑀 ,  𝑀 ,  if ( 𝑧  <  𝐼 ,  ( 𝑧  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑧  +  ( 1  −  𝐼 ) ) ) ) ) ) | 
						
							| 26 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑧  =  𝑀 )  →  𝑧  =  𝑀 ) | 
						
							| 27 | 26 | iftrued | ⊢ ( ( 𝜑  ∧  𝑧  =  𝑀 )  →  if ( 𝑧  =  𝑀 ,  𝑀 ,  if ( 𝑧  <  𝐼 ,  ( 𝑧  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑧  +  ( 1  −  𝐼 ) ) ) )  =  𝑀 ) | 
						
							| 28 |  | 1zzd | ⊢ ( 𝑀  ∈  ℕ  →  1  ∈  ℤ ) | 
						
							| 29 |  | nnge1 | ⊢ ( 𝑀  ∈  ℕ  →  1  ≤  𝑀 ) | 
						
							| 30 |  | nnre | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℝ ) | 
						
							| 31 | 30 | leidd | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ≤  𝑀 ) | 
						
							| 32 | 28 16 16 29 31 | elfzd | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 33 | 1 32 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 34 | 25 27 33 1 | fvmptd | ⊢ ( 𝜑  →  ( 𝐵 ‘ 𝑀 )  =  𝑀 ) | 
						
							| 35 | 24 34 | eqtrd | ⊢ ( 𝜑  →  ( 𝐵 ‘ ( 𝐴 ‘ 𝑋 ) )  =  𝑀 ) | 
						
							| 36 | 35 | fveq2d | ⊢ ( 𝜑  →  ( 𝐶 ‘ ( 𝐵 ‘ ( 𝐴 ‘ 𝑋 ) ) )  =  ( 𝐶 ‘ 𝑀 ) ) | 
						
							| 37 | 5 | a1i | ⊢ ( 𝜑  →  𝐶  =  ( 𝑦  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) ) ) ) | 
						
							| 38 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑦  =  𝑀 )  →  𝑦  =  𝑀 ) | 
						
							| 39 | 38 | iftrued | ⊢ ( ( 𝜑  ∧  𝑦  =  𝑀 )  →  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) )  =  𝐼 ) | 
						
							| 40 | 37 39 33 2 | fvmptd | ⊢ ( 𝜑  →  ( 𝐶 ‘ 𝑀 )  =  𝐼 ) | 
						
							| 41 | 36 40 | eqtrd | ⊢ ( 𝜑  →  ( 𝐶 ‘ ( 𝐵 ‘ ( 𝐴 ‘ 𝑋 ) ) )  =  𝐼 ) | 
						
							| 42 | 7 | eqcomd | ⊢ ( 𝜑  →  𝐼  =  𝑋 ) | 
						
							| 43 | 41 42 | eqtrd | ⊢ ( 𝜑  →  ( 𝐶 ‘ ( 𝐵 ‘ ( 𝐴 ‘ 𝑋 ) ) )  =  𝑋 ) |