| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt27.1 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 2 |  | metakunt27.2 | ⊢ ( 𝜑  →  𝐼  ∈  ℕ ) | 
						
							| 3 |  | metakunt27.3 | ⊢ ( 𝜑  →  𝐼  ≤  𝑀 ) | 
						
							| 4 |  | metakunt27.4 | ⊢ ( 𝜑  →  𝑋  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 5 |  | metakunt27.5 | ⊢ 𝐴  =  ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) ) ) | 
						
							| 6 |  | metakunt27.6 | ⊢ 𝐵  =  ( 𝑧  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑧  =  𝑀 ,  𝑀 ,  if ( 𝑧  <  𝐼 ,  ( 𝑧  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑧  +  ( 1  −  𝐼 ) ) ) ) ) | 
						
							| 7 |  | metakunt27.7 | ⊢ ( 𝜑  →  ¬  𝑋  =  𝐼 ) | 
						
							| 8 |  | metakunt27.8 | ⊢ ( 𝜑  →  𝑋  <  𝐼 ) | 
						
							| 9 | 5 | a1i | ⊢ ( 𝜑  →  𝐴  =  ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) ) ) ) | 
						
							| 10 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  ¬  𝑋  =  𝐼 ) | 
						
							| 11 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  𝑥  =  𝑋 ) | 
						
							| 12 | 11 | eqeq1d | ⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  ( 𝑥  =  𝐼  ↔  𝑋  =  𝐼 ) ) | 
						
							| 13 | 12 | notbid | ⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  ( ¬  𝑥  =  𝐼  ↔  ¬  𝑋  =  𝐼 ) ) | 
						
							| 14 | 10 13 | mpbird | ⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  ¬  𝑥  =  𝐼 ) | 
						
							| 15 | 14 | iffalsed | ⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) )  =  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) ) | 
						
							| 16 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  𝑋  <  𝐼 ) | 
						
							| 17 | 11 | breq1d | ⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  ( 𝑥  <  𝐼  ↔  𝑋  <  𝐼 ) ) | 
						
							| 18 | 16 17 | mpbird | ⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  𝑥  <  𝐼 ) | 
						
							| 19 | 18 | iftrued | ⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) )  =  𝑥 ) | 
						
							| 20 | 19 11 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) )  =  𝑋 ) | 
						
							| 21 | 15 20 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  =  𝑋 )  →  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) )  =  𝑋 ) | 
						
							| 22 | 9 21 4 4 | fvmptd | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑋 )  =  𝑋 ) | 
						
							| 23 | 22 | fveq2d | ⊢ ( 𝜑  →  ( 𝐵 ‘ ( 𝐴 ‘ 𝑋 ) )  =  ( 𝐵 ‘ 𝑋 ) ) | 
						
							| 24 | 6 | a1i | ⊢ ( 𝜑  →  𝐵  =  ( 𝑧  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑧  =  𝑀 ,  𝑀 ,  if ( 𝑧  <  𝐼 ,  ( 𝑧  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑧  +  ( 1  −  𝐼 ) ) ) ) ) ) | 
						
							| 25 |  | elfznn | ⊢ ( 𝑋  ∈  ( 1 ... 𝑀 )  →  𝑋  ∈  ℕ ) | 
						
							| 26 | 4 25 | syl | ⊢ ( 𝜑  →  𝑋  ∈  ℕ ) | 
						
							| 27 | 26 | nnred | ⊢ ( 𝜑  →  𝑋  ∈  ℝ ) | 
						
							| 28 | 2 | nnred | ⊢ ( 𝜑  →  𝐼  ∈  ℝ ) | 
						
							| 29 | 1 | nnred | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 30 | 27 28 29 8 3 | ltletrd | ⊢ ( 𝜑  →  𝑋  <  𝑀 ) | 
						
							| 31 | 27 30 | ltned | ⊢ ( 𝜑  →  𝑋  ≠  𝑀 ) | 
						
							| 32 | 31 | neneqd | ⊢ ( 𝜑  →  ¬  𝑋  =  𝑀 ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  =  𝑋 )  →  ¬  𝑋  =  𝑀 ) | 
						
							| 34 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑧  =  𝑋 )  →  𝑧  =  𝑋 ) | 
						
							| 35 | 34 | eqeq1d | ⊢ ( ( 𝜑  ∧  𝑧  =  𝑋 )  →  ( 𝑧  =  𝑀  ↔  𝑋  =  𝑀 ) ) | 
						
							| 36 | 35 | notbid | ⊢ ( ( 𝜑  ∧  𝑧  =  𝑋 )  →  ( ¬  𝑧  =  𝑀  ↔  ¬  𝑋  =  𝑀 ) ) | 
						
							| 37 | 33 36 | mpbird | ⊢ ( ( 𝜑  ∧  𝑧  =  𝑋 )  →  ¬  𝑧  =  𝑀 ) | 
						
							| 38 | 37 | iffalsed | ⊢ ( ( 𝜑  ∧  𝑧  =  𝑋 )  →  if ( 𝑧  =  𝑀 ,  𝑀 ,  if ( 𝑧  <  𝐼 ,  ( 𝑧  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑧  +  ( 1  −  𝐼 ) ) ) )  =  if ( 𝑧  <  𝐼 ,  ( 𝑧  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑧  +  ( 1  −  𝐼 ) ) ) ) | 
						
							| 39 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  =  𝑋 )  →  𝑋  <  𝐼 ) | 
						
							| 40 | 34 | breq1d | ⊢ ( ( 𝜑  ∧  𝑧  =  𝑋 )  →  ( 𝑧  <  𝐼  ↔  𝑋  <  𝐼 ) ) | 
						
							| 41 | 39 40 | mpbird | ⊢ ( ( 𝜑  ∧  𝑧  =  𝑋 )  →  𝑧  <  𝐼 ) | 
						
							| 42 | 41 | iftrued | ⊢ ( ( 𝜑  ∧  𝑧  =  𝑋 )  →  if ( 𝑧  <  𝐼 ,  ( 𝑧  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑧  +  ( 1  −  𝐼 ) ) )  =  ( 𝑧  +  ( 𝑀  −  𝐼 ) ) ) | 
						
							| 43 | 34 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑧  =  𝑋 )  →  ( 𝑧  +  ( 𝑀  −  𝐼 ) )  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ) | 
						
							| 44 | 42 43 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑧  =  𝑋 )  →  if ( 𝑧  <  𝐼 ,  ( 𝑧  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑧  +  ( 1  −  𝐼 ) ) )  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ) | 
						
							| 45 | 38 44 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑧  =  𝑋 )  →  if ( 𝑧  =  𝑀 ,  𝑀 ,  if ( 𝑧  <  𝐼 ,  ( 𝑧  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑧  +  ( 1  −  𝐼 ) ) ) )  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ) | 
						
							| 46 | 4 | elfzelzd | ⊢ ( 𝜑  →  𝑋  ∈  ℤ ) | 
						
							| 47 | 1 | nnzd | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 48 | 2 | nnzd | ⊢ ( 𝜑  →  𝐼  ∈  ℤ ) | 
						
							| 49 | 47 48 | zsubcld | ⊢ ( 𝜑  →  ( 𝑀  −  𝐼 )  ∈  ℤ ) | 
						
							| 50 | 46 49 | zaddcld | ⊢ ( 𝜑  →  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  ∈  ℤ ) | 
						
							| 51 | 24 45 4 50 | fvmptd | ⊢ ( 𝜑  →  ( 𝐵 ‘ 𝑋 )  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ) | 
						
							| 52 | 23 51 | eqtrd | ⊢ ( 𝜑  →  ( 𝐵 ‘ ( 𝐴 ‘ 𝑋 ) )  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ) |