| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt27.1 |  |-  ( ph -> M e. NN ) | 
						
							| 2 |  | metakunt27.2 |  |-  ( ph -> I e. NN ) | 
						
							| 3 |  | metakunt27.3 |  |-  ( ph -> I <_ M ) | 
						
							| 4 |  | metakunt27.4 |  |-  ( ph -> X e. ( 1 ... M ) ) | 
						
							| 5 |  | metakunt27.5 |  |-  A = ( x e. ( 1 ... M ) |-> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) ) | 
						
							| 6 |  | metakunt27.6 |  |-  B = ( z e. ( 1 ... M ) |-> if ( z = M , M , if ( z < I , ( z + ( M - I ) ) , ( z + ( 1 - I ) ) ) ) ) | 
						
							| 7 |  | metakunt27.7 |  |-  ( ph -> -. X = I ) | 
						
							| 8 |  | metakunt27.8 |  |-  ( ph -> X < I ) | 
						
							| 9 | 5 | a1i |  |-  ( ph -> A = ( x e. ( 1 ... M ) |-> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) ) ) | 
						
							| 10 | 7 | adantr |  |-  ( ( ph /\ x = X ) -> -. X = I ) | 
						
							| 11 |  | simpr |  |-  ( ( ph /\ x = X ) -> x = X ) | 
						
							| 12 | 11 | eqeq1d |  |-  ( ( ph /\ x = X ) -> ( x = I <-> X = I ) ) | 
						
							| 13 | 12 | notbid |  |-  ( ( ph /\ x = X ) -> ( -. x = I <-> -. X = I ) ) | 
						
							| 14 | 10 13 | mpbird |  |-  ( ( ph /\ x = X ) -> -. x = I ) | 
						
							| 15 | 14 | iffalsed |  |-  ( ( ph /\ x = X ) -> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) = if ( x < I , x , ( x - 1 ) ) ) | 
						
							| 16 | 8 | adantr |  |-  ( ( ph /\ x = X ) -> X < I ) | 
						
							| 17 | 11 | breq1d |  |-  ( ( ph /\ x = X ) -> ( x < I <-> X < I ) ) | 
						
							| 18 | 16 17 | mpbird |  |-  ( ( ph /\ x = X ) -> x < I ) | 
						
							| 19 | 18 | iftrued |  |-  ( ( ph /\ x = X ) -> if ( x < I , x , ( x - 1 ) ) = x ) | 
						
							| 20 | 19 11 | eqtrd |  |-  ( ( ph /\ x = X ) -> if ( x < I , x , ( x - 1 ) ) = X ) | 
						
							| 21 | 15 20 | eqtrd |  |-  ( ( ph /\ x = X ) -> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) = X ) | 
						
							| 22 | 9 21 4 4 | fvmptd |  |-  ( ph -> ( A ` X ) = X ) | 
						
							| 23 | 22 | fveq2d |  |-  ( ph -> ( B ` ( A ` X ) ) = ( B ` X ) ) | 
						
							| 24 | 6 | a1i |  |-  ( ph -> B = ( z e. ( 1 ... M ) |-> if ( z = M , M , if ( z < I , ( z + ( M - I ) ) , ( z + ( 1 - I ) ) ) ) ) ) | 
						
							| 25 |  | elfznn |  |-  ( X e. ( 1 ... M ) -> X e. NN ) | 
						
							| 26 | 4 25 | syl |  |-  ( ph -> X e. NN ) | 
						
							| 27 | 26 | nnred |  |-  ( ph -> X e. RR ) | 
						
							| 28 | 2 | nnred |  |-  ( ph -> I e. RR ) | 
						
							| 29 | 1 | nnred |  |-  ( ph -> M e. RR ) | 
						
							| 30 | 27 28 29 8 3 | ltletrd |  |-  ( ph -> X < M ) | 
						
							| 31 | 27 30 | ltned |  |-  ( ph -> X =/= M ) | 
						
							| 32 | 31 | neneqd |  |-  ( ph -> -. X = M ) | 
						
							| 33 | 32 | adantr |  |-  ( ( ph /\ z = X ) -> -. X = M ) | 
						
							| 34 |  | simpr |  |-  ( ( ph /\ z = X ) -> z = X ) | 
						
							| 35 | 34 | eqeq1d |  |-  ( ( ph /\ z = X ) -> ( z = M <-> X = M ) ) | 
						
							| 36 | 35 | notbid |  |-  ( ( ph /\ z = X ) -> ( -. z = M <-> -. X = M ) ) | 
						
							| 37 | 33 36 | mpbird |  |-  ( ( ph /\ z = X ) -> -. z = M ) | 
						
							| 38 | 37 | iffalsed |  |-  ( ( ph /\ z = X ) -> if ( z = M , M , if ( z < I , ( z + ( M - I ) ) , ( z + ( 1 - I ) ) ) ) = if ( z < I , ( z + ( M - I ) ) , ( z + ( 1 - I ) ) ) ) | 
						
							| 39 | 8 | adantr |  |-  ( ( ph /\ z = X ) -> X < I ) | 
						
							| 40 | 34 | breq1d |  |-  ( ( ph /\ z = X ) -> ( z < I <-> X < I ) ) | 
						
							| 41 | 39 40 | mpbird |  |-  ( ( ph /\ z = X ) -> z < I ) | 
						
							| 42 | 41 | iftrued |  |-  ( ( ph /\ z = X ) -> if ( z < I , ( z + ( M - I ) ) , ( z + ( 1 - I ) ) ) = ( z + ( M - I ) ) ) | 
						
							| 43 | 34 | oveq1d |  |-  ( ( ph /\ z = X ) -> ( z + ( M - I ) ) = ( X + ( M - I ) ) ) | 
						
							| 44 | 42 43 | eqtrd |  |-  ( ( ph /\ z = X ) -> if ( z < I , ( z + ( M - I ) ) , ( z + ( 1 - I ) ) ) = ( X + ( M - I ) ) ) | 
						
							| 45 | 38 44 | eqtrd |  |-  ( ( ph /\ z = X ) -> if ( z = M , M , if ( z < I , ( z + ( M - I ) ) , ( z + ( 1 - I ) ) ) ) = ( X + ( M - I ) ) ) | 
						
							| 46 | 4 | elfzelzd |  |-  ( ph -> X e. ZZ ) | 
						
							| 47 | 1 | nnzd |  |-  ( ph -> M e. ZZ ) | 
						
							| 48 | 2 | nnzd |  |-  ( ph -> I e. ZZ ) | 
						
							| 49 | 47 48 | zsubcld |  |-  ( ph -> ( M - I ) e. ZZ ) | 
						
							| 50 | 46 49 | zaddcld |  |-  ( ph -> ( X + ( M - I ) ) e. ZZ ) | 
						
							| 51 | 24 45 4 50 | fvmptd |  |-  ( ph -> ( B ` X ) = ( X + ( M - I ) ) ) | 
						
							| 52 | 23 51 | eqtrd |  |-  ( ph -> ( B ` ( A ` X ) ) = ( X + ( M - I ) ) ) |