Step |
Hyp |
Ref |
Expression |
1 |
|
metakunt28.1 |
|- ( ph -> M e. NN ) |
2 |
|
metakunt28.2 |
|- ( ph -> I e. NN ) |
3 |
|
metakunt28.3 |
|- ( ph -> I <_ M ) |
4 |
|
metakunt28.4 |
|- ( ph -> X e. ( 1 ... M ) ) |
5 |
|
metakunt28.5 |
|- A = ( x e. ( 1 ... M ) |-> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) ) |
6 |
|
metakunt28.6 |
|- B = ( z e. ( 1 ... M ) |-> if ( z = M , M , if ( z < I , ( z + ( M - I ) ) , ( z + ( 1 - I ) ) ) ) ) |
7 |
|
metakunt28.7 |
|- ( ph -> -. X = I ) |
8 |
|
metakunt28.8 |
|- ( ph -> -. X < I ) |
9 |
5
|
a1i |
|- ( ph -> A = ( x e. ( 1 ... M ) |-> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) ) ) |
10 |
7
|
adantr |
|- ( ( ph /\ x = X ) -> -. X = I ) |
11 |
|
simpr |
|- ( ( ph /\ x = X ) -> x = X ) |
12 |
11
|
eqeq1d |
|- ( ( ph /\ x = X ) -> ( x = I <-> X = I ) ) |
13 |
12
|
notbid |
|- ( ( ph /\ x = X ) -> ( -. x = I <-> -. X = I ) ) |
14 |
10 13
|
mpbird |
|- ( ( ph /\ x = X ) -> -. x = I ) |
15 |
14
|
iffalsed |
|- ( ( ph /\ x = X ) -> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) = if ( x < I , x , ( x - 1 ) ) ) |
16 |
8
|
adantr |
|- ( ( ph /\ x = X ) -> -. X < I ) |
17 |
11
|
breq1d |
|- ( ( ph /\ x = X ) -> ( x < I <-> X < I ) ) |
18 |
17
|
notbid |
|- ( ( ph /\ x = X ) -> ( -. x < I <-> -. X < I ) ) |
19 |
16 18
|
mpbird |
|- ( ( ph /\ x = X ) -> -. x < I ) |
20 |
19
|
iffalsed |
|- ( ( ph /\ x = X ) -> if ( x < I , x , ( x - 1 ) ) = ( x - 1 ) ) |
21 |
11
|
oveq1d |
|- ( ( ph /\ x = X ) -> ( x - 1 ) = ( X - 1 ) ) |
22 |
20 21
|
eqtrd |
|- ( ( ph /\ x = X ) -> if ( x < I , x , ( x - 1 ) ) = ( X - 1 ) ) |
23 |
15 22
|
eqtrd |
|- ( ( ph /\ x = X ) -> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) = ( X - 1 ) ) |
24 |
4
|
elfzelzd |
|- ( ph -> X e. ZZ ) |
25 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
26 |
24 25
|
zsubcld |
|- ( ph -> ( X - 1 ) e. ZZ ) |
27 |
9 23 4 26
|
fvmptd |
|- ( ph -> ( A ` X ) = ( X - 1 ) ) |
28 |
27
|
fveq2d |
|- ( ph -> ( B ` ( A ` X ) ) = ( B ` ( X - 1 ) ) ) |
29 |
6
|
a1i |
|- ( ph -> B = ( z e. ( 1 ... M ) |-> if ( z = M , M , if ( z < I , ( z + ( M - I ) ) , ( z + ( 1 - I ) ) ) ) ) ) |
30 |
26
|
zred |
|- ( ph -> ( X - 1 ) e. RR ) |
31 |
24
|
zred |
|- ( ph -> X e. RR ) |
32 |
1
|
nnred |
|- ( ph -> M e. RR ) |
33 |
|
1rp |
|- 1 e. RR+ |
34 |
33
|
a1i |
|- ( ph -> 1 e. RR+ ) |
35 |
31 34
|
ltsubrpd |
|- ( ph -> ( X - 1 ) < X ) |
36 |
|
elfzle2 |
|- ( X e. ( 1 ... M ) -> X <_ M ) |
37 |
4 36
|
syl |
|- ( ph -> X <_ M ) |
38 |
30 31 32 35 37
|
ltletrd |
|- ( ph -> ( X - 1 ) < M ) |
39 |
30 38
|
ltned |
|- ( ph -> ( X - 1 ) =/= M ) |
40 |
39
|
adantr |
|- ( ( ph /\ z = ( X - 1 ) ) -> ( X - 1 ) =/= M ) |
41 |
40
|
neneqd |
|- ( ( ph /\ z = ( X - 1 ) ) -> -. ( X - 1 ) = M ) |
42 |
|
simpr |
|- ( ( ph /\ z = ( X - 1 ) ) -> z = ( X - 1 ) ) |
43 |
42
|
eqeq1d |
|- ( ( ph /\ z = ( X - 1 ) ) -> ( z = M <-> ( X - 1 ) = M ) ) |
44 |
43
|
notbid |
|- ( ( ph /\ z = ( X - 1 ) ) -> ( -. z = M <-> -. ( X - 1 ) = M ) ) |
45 |
41 44
|
mpbird |
|- ( ( ph /\ z = ( X - 1 ) ) -> -. z = M ) |
46 |
45
|
iffalsed |
|- ( ( ph /\ z = ( X - 1 ) ) -> if ( z = M , M , if ( z < I , ( z + ( M - I ) ) , ( z + ( 1 - I ) ) ) ) = if ( z < I , ( z + ( M - I ) ) , ( z + ( 1 - I ) ) ) ) |
47 |
7
|
neqned |
|- ( ph -> X =/= I ) |
48 |
2
|
nnred |
|- ( ph -> I e. RR ) |
49 |
48 31 8
|
nltled |
|- ( ph -> I <_ X ) |
50 |
48 31 49
|
leltned |
|- ( ph -> ( I < X <-> X =/= I ) ) |
51 |
47 50
|
mpbird |
|- ( ph -> I < X ) |
52 |
2
|
nnzd |
|- ( ph -> I e. ZZ ) |
53 |
52 24
|
zltlem1d |
|- ( ph -> ( I < X <-> I <_ ( X - 1 ) ) ) |
54 |
51 53
|
mpbid |
|- ( ph -> I <_ ( X - 1 ) ) |
55 |
48 30
|
lenltd |
|- ( ph -> ( I <_ ( X - 1 ) <-> -. ( X - 1 ) < I ) ) |
56 |
54 55
|
mpbid |
|- ( ph -> -. ( X - 1 ) < I ) |
57 |
56
|
adantr |
|- ( ( ph /\ z = ( X - 1 ) ) -> -. ( X - 1 ) < I ) |
58 |
42
|
breq1d |
|- ( ( ph /\ z = ( X - 1 ) ) -> ( z < I <-> ( X - 1 ) < I ) ) |
59 |
58
|
notbid |
|- ( ( ph /\ z = ( X - 1 ) ) -> ( -. z < I <-> -. ( X - 1 ) < I ) ) |
60 |
57 59
|
mpbird |
|- ( ( ph /\ z = ( X - 1 ) ) -> -. z < I ) |
61 |
60
|
iffalsed |
|- ( ( ph /\ z = ( X - 1 ) ) -> if ( z < I , ( z + ( M - I ) ) , ( z + ( 1 - I ) ) ) = ( z + ( 1 - I ) ) ) |
62 |
42
|
oveq1d |
|- ( ( ph /\ z = ( X - 1 ) ) -> ( z + ( 1 - I ) ) = ( ( X - 1 ) + ( 1 - I ) ) ) |
63 |
24
|
zcnd |
|- ( ph -> X e. CC ) |
64 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
65 |
2
|
nncnd |
|- ( ph -> I e. CC ) |
66 |
63 64 65
|
npncand |
|- ( ph -> ( ( X - 1 ) + ( 1 - I ) ) = ( X - I ) ) |
67 |
66
|
adantr |
|- ( ( ph /\ z = ( X - 1 ) ) -> ( ( X - 1 ) + ( 1 - I ) ) = ( X - I ) ) |
68 |
62 67
|
eqtrd |
|- ( ( ph /\ z = ( X - 1 ) ) -> ( z + ( 1 - I ) ) = ( X - I ) ) |
69 |
61 68
|
eqtrd |
|- ( ( ph /\ z = ( X - 1 ) ) -> if ( z < I , ( z + ( M - I ) ) , ( z + ( 1 - I ) ) ) = ( X - I ) ) |
70 |
46 69
|
eqtrd |
|- ( ( ph /\ z = ( X - 1 ) ) -> if ( z = M , M , if ( z < I , ( z + ( M - I ) ) , ( z + ( 1 - I ) ) ) ) = ( X - I ) ) |
71 |
1
|
nnzd |
|- ( ph -> M e. ZZ ) |
72 |
|
1red |
|- ( ph -> 1 e. RR ) |
73 |
2
|
nnge1d |
|- ( ph -> 1 <_ I ) |
74 |
72 48 31 73 51
|
lelttrd |
|- ( ph -> 1 < X ) |
75 |
25 24
|
zltlem1d |
|- ( ph -> ( 1 < X <-> 1 <_ ( X - 1 ) ) ) |
76 |
74 75
|
mpbid |
|- ( ph -> 1 <_ ( X - 1 ) ) |
77 |
31 72
|
resubcld |
|- ( ph -> ( X - 1 ) e. RR ) |
78 |
|
0le1 |
|- 0 <_ 1 |
79 |
78
|
a1i |
|- ( ph -> 0 <_ 1 ) |
80 |
31 72
|
subge02d |
|- ( ph -> ( 0 <_ 1 <-> ( X - 1 ) <_ X ) ) |
81 |
79 80
|
mpbid |
|- ( ph -> ( X - 1 ) <_ X ) |
82 |
77 31 32 81 37
|
letrd |
|- ( ph -> ( X - 1 ) <_ M ) |
83 |
25 71 26 76 82
|
elfzd |
|- ( ph -> ( X - 1 ) e. ( 1 ... M ) ) |
84 |
24 52
|
zsubcld |
|- ( ph -> ( X - I ) e. ZZ ) |
85 |
29 70 83 84
|
fvmptd |
|- ( ph -> ( B ` ( X - 1 ) ) = ( X - I ) ) |
86 |
28 85
|
eqtrd |
|- ( ph -> ( B ` ( A ` X ) ) = ( X - I ) ) |