| Step |
Hyp |
Ref |
Expression |
| 1 |
|
metakunt28.1 |
|
| 2 |
|
metakunt28.2 |
|
| 3 |
|
metakunt28.3 |
|
| 4 |
|
metakunt28.4 |
|
| 5 |
|
metakunt28.5 |
|
| 6 |
|
metakunt28.6 |
|
| 7 |
|
metakunt28.7 |
|
| 8 |
|
metakunt28.8 |
|
| 9 |
5
|
a1i |
|
| 10 |
7
|
adantr |
|
| 11 |
|
simpr |
|
| 12 |
11
|
eqeq1d |
|
| 13 |
12
|
notbid |
|
| 14 |
10 13
|
mpbird |
|
| 15 |
14
|
iffalsed |
|
| 16 |
8
|
adantr |
|
| 17 |
11
|
breq1d |
|
| 18 |
17
|
notbid |
|
| 19 |
16 18
|
mpbird |
|
| 20 |
19
|
iffalsed |
|
| 21 |
11
|
oveq1d |
|
| 22 |
20 21
|
eqtrd |
|
| 23 |
15 22
|
eqtrd |
|
| 24 |
4
|
elfzelzd |
|
| 25 |
|
1zzd |
|
| 26 |
24 25
|
zsubcld |
|
| 27 |
9 23 4 26
|
fvmptd |
|
| 28 |
27
|
fveq2d |
|
| 29 |
6
|
a1i |
|
| 30 |
26
|
zred |
|
| 31 |
24
|
zred |
|
| 32 |
1
|
nnred |
|
| 33 |
|
1rp |
|
| 34 |
33
|
a1i |
|
| 35 |
31 34
|
ltsubrpd |
|
| 36 |
|
elfzle2 |
|
| 37 |
4 36
|
syl |
|
| 38 |
30 31 32 35 37
|
ltletrd |
|
| 39 |
30 38
|
ltned |
|
| 40 |
39
|
adantr |
|
| 41 |
40
|
neneqd |
|
| 42 |
|
simpr |
|
| 43 |
42
|
eqeq1d |
|
| 44 |
43
|
notbid |
|
| 45 |
41 44
|
mpbird |
|
| 46 |
45
|
iffalsed |
|
| 47 |
7
|
neqned |
|
| 48 |
2
|
nnred |
|
| 49 |
48 31 8
|
nltled |
|
| 50 |
48 31 49
|
leltned |
|
| 51 |
47 50
|
mpbird |
|
| 52 |
2
|
nnzd |
|
| 53 |
52 24
|
zltlem1d |
|
| 54 |
51 53
|
mpbid |
|
| 55 |
48 30
|
lenltd |
|
| 56 |
54 55
|
mpbid |
|
| 57 |
56
|
adantr |
|
| 58 |
42
|
breq1d |
|
| 59 |
58
|
notbid |
|
| 60 |
57 59
|
mpbird |
|
| 61 |
60
|
iffalsed |
|
| 62 |
42
|
oveq1d |
|
| 63 |
24
|
zcnd |
|
| 64 |
|
1cnd |
|
| 65 |
2
|
nncnd |
|
| 66 |
63 64 65
|
npncand |
|
| 67 |
66
|
adantr |
|
| 68 |
62 67
|
eqtrd |
|
| 69 |
61 68
|
eqtrd |
|
| 70 |
46 69
|
eqtrd |
|
| 71 |
1
|
nnzd |
|
| 72 |
|
1red |
|
| 73 |
2
|
nnge1d |
|
| 74 |
72 48 31 73 51
|
lelttrd |
|
| 75 |
25 24
|
zltlem1d |
|
| 76 |
74 75
|
mpbid |
|
| 77 |
31 72
|
resubcld |
|
| 78 |
|
0le1 |
|
| 79 |
78
|
a1i |
|
| 80 |
31 72
|
subge02d |
|
| 81 |
79 80
|
mpbid |
|
| 82 |
77 31 32 81 37
|
letrd |
|
| 83 |
25 71 26 76 82
|
elfzd |
|
| 84 |
24 52
|
zsubcld |
|
| 85 |
29 70 83 84
|
fvmptd |
|
| 86 |
28 85
|
eqtrd |
|