| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt17.1 | ⊢ ( 𝜑  →  𝐺 : 𝐴 –1-1-onto→ 𝑋 ) | 
						
							| 2 |  | metakunt17.2 | ⊢ ( 𝜑  →  𝐻 : 𝐵 –1-1-onto→ 𝑌 ) | 
						
							| 3 |  | metakunt17.3 | ⊢ ( 𝜑  →  𝐼 : 𝐶 –1-1-onto→ 𝑍 ) | 
						
							| 4 |  | metakunt17.4 | ⊢ ( 𝜑  →  ( 𝐴  ∩  𝐵 )  =  ∅ ) | 
						
							| 5 |  | metakunt17.5 | ⊢ ( 𝜑  →  ( 𝐴  ∩  𝐶 )  =  ∅ ) | 
						
							| 6 |  | metakunt17.6 | ⊢ ( 𝜑  →  ( 𝐵  ∩  𝐶 )  =  ∅ ) | 
						
							| 7 |  | metakunt17.7 | ⊢ ( 𝜑  →  ( 𝑋  ∩  𝑌 )  =  ∅ ) | 
						
							| 8 |  | metakunt17.8 | ⊢ ( 𝜑  →  ( 𝑋  ∩  𝑍 )  =  ∅ ) | 
						
							| 9 |  | metakunt17.9 | ⊢ ( 𝜑  →  ( 𝑌  ∩  𝑍 )  =  ∅ ) | 
						
							| 10 |  | metakunt17.10 | ⊢ ( 𝜑  →  𝐹  =  ( ( 𝐺  ∪  𝐻 )  ∪  𝐼 ) ) | 
						
							| 11 |  | metakunt17.11 | ⊢ ( 𝜑  →  𝐷  =  ( ( 𝐴  ∪  𝐵 )  ∪  𝐶 ) ) | 
						
							| 12 |  | metakunt17.12 | ⊢ ( 𝜑  →  𝑊  =  ( ( 𝑋  ∪  𝑌 )  ∪  𝑍 ) ) | 
						
							| 13 | 4 7 | jca | ⊢ ( 𝜑  →  ( ( 𝐴  ∩  𝐵 )  =  ∅  ∧  ( 𝑋  ∩  𝑌 )  =  ∅ ) ) | 
						
							| 14 | 1 2 13 | jca31 | ⊢ ( 𝜑  →  ( ( 𝐺 : 𝐴 –1-1-onto→ 𝑋  ∧  𝐻 : 𝐵 –1-1-onto→ 𝑌 )  ∧  ( ( 𝐴  ∩  𝐵 )  =  ∅  ∧  ( 𝑋  ∩  𝑌 )  =  ∅ ) ) ) | 
						
							| 15 |  | f1oun | ⊢ ( ( ( 𝐺 : 𝐴 –1-1-onto→ 𝑋  ∧  𝐻 : 𝐵 –1-1-onto→ 𝑌 )  ∧  ( ( 𝐴  ∩  𝐵 )  =  ∅  ∧  ( 𝑋  ∩  𝑌 )  =  ∅ ) )  →  ( 𝐺  ∪  𝐻 ) : ( 𝐴  ∪  𝐵 ) –1-1-onto→ ( 𝑋  ∪  𝑌 ) ) | 
						
							| 16 | 14 15 | syl | ⊢ ( 𝜑  →  ( 𝐺  ∪  𝐻 ) : ( 𝐴  ∪  𝐵 ) –1-1-onto→ ( 𝑋  ∪  𝑌 ) ) | 
						
							| 17 |  | indir | ⊢ ( ( 𝐴  ∪  𝐵 )  ∩  𝐶 )  =  ( ( 𝐴  ∩  𝐶 )  ∪  ( 𝐵  ∩  𝐶 ) ) | 
						
							| 18 | 5 6 | uneq12d | ⊢ ( 𝜑  →  ( ( 𝐴  ∩  𝐶 )  ∪  ( 𝐵  ∩  𝐶 ) )  =  ( ∅  ∪  ∅ ) ) | 
						
							| 19 |  | 0un | ⊢ ( ∅  ∪  ∅ )  =  ∅ | 
						
							| 20 | 19 | a1i | ⊢ ( 𝜑  →  ( ∅  ∪  ∅ )  =  ∅ ) | 
						
							| 21 | 18 20 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐴  ∩  𝐶 )  ∪  ( 𝐵  ∩  𝐶 ) )  =  ∅ ) | 
						
							| 22 | 17 21 | eqtrid | ⊢ ( 𝜑  →  ( ( 𝐴  ∪  𝐵 )  ∩  𝐶 )  =  ∅ ) | 
						
							| 23 |  | indir | ⊢ ( ( 𝑋  ∪  𝑌 )  ∩  𝑍 )  =  ( ( 𝑋  ∩  𝑍 )  ∪  ( 𝑌  ∩  𝑍 ) ) | 
						
							| 24 | 8 9 | uneq12d | ⊢ ( 𝜑  →  ( ( 𝑋  ∩  𝑍 )  ∪  ( 𝑌  ∩  𝑍 ) )  =  ( ∅  ∪  ∅ ) ) | 
						
							| 25 | 24 20 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑋  ∩  𝑍 )  ∪  ( 𝑌  ∩  𝑍 ) )  =  ∅ ) | 
						
							| 26 | 23 25 | eqtrid | ⊢ ( 𝜑  →  ( ( 𝑋  ∪  𝑌 )  ∩  𝑍 )  =  ∅ ) | 
						
							| 27 | 22 26 | jca | ⊢ ( 𝜑  →  ( ( ( 𝐴  ∪  𝐵 )  ∩  𝐶 )  =  ∅  ∧  ( ( 𝑋  ∪  𝑌 )  ∩  𝑍 )  =  ∅ ) ) | 
						
							| 28 | 16 3 27 | jca31 | ⊢ ( 𝜑  →  ( ( ( 𝐺  ∪  𝐻 ) : ( 𝐴  ∪  𝐵 ) –1-1-onto→ ( 𝑋  ∪  𝑌 )  ∧  𝐼 : 𝐶 –1-1-onto→ 𝑍 )  ∧  ( ( ( 𝐴  ∪  𝐵 )  ∩  𝐶 )  =  ∅  ∧  ( ( 𝑋  ∪  𝑌 )  ∩  𝑍 )  =  ∅ ) ) ) | 
						
							| 29 |  | f1oun | ⊢ ( ( ( ( 𝐺  ∪  𝐻 ) : ( 𝐴  ∪  𝐵 ) –1-1-onto→ ( 𝑋  ∪  𝑌 )  ∧  𝐼 : 𝐶 –1-1-onto→ 𝑍 )  ∧  ( ( ( 𝐴  ∪  𝐵 )  ∩  𝐶 )  =  ∅  ∧  ( ( 𝑋  ∪  𝑌 )  ∩  𝑍 )  =  ∅ ) )  →  ( ( 𝐺  ∪  𝐻 )  ∪  𝐼 ) : ( ( 𝐴  ∪  𝐵 )  ∪  𝐶 ) –1-1-onto→ ( ( 𝑋  ∪  𝑌 )  ∪  𝑍 ) ) | 
						
							| 30 | 28 29 | syl | ⊢ ( 𝜑  →  ( ( 𝐺  ∪  𝐻 )  ∪  𝐼 ) : ( ( 𝐴  ∪  𝐵 )  ∪  𝐶 ) –1-1-onto→ ( ( 𝑋  ∪  𝑌 )  ∪  𝑍 ) ) | 
						
							| 31 | 10 11 12 | f1oeq123d | ⊢ ( 𝜑  →  ( 𝐹 : 𝐷 –1-1-onto→ 𝑊  ↔  ( ( 𝐺  ∪  𝐻 )  ∪  𝐼 ) : ( ( 𝐴  ∪  𝐵 )  ∪  𝐶 ) –1-1-onto→ ( ( 𝑋  ∪  𝑌 )  ∪  𝑍 ) ) ) | 
						
							| 32 | 30 31 | mpbird | ⊢ ( 𝜑  →  𝐹 : 𝐷 –1-1-onto→ 𝑊 ) |