| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metcn.2 | ⊢ 𝐽  =  ( MetOpen ‘ 𝐶 ) | 
						
							| 2 |  | metcn.4 | ⊢ 𝐾  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 3 |  | simpr | ⊢ ( ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ 𝑌 ) )  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  →  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) ) | 
						
							| 4 |  | simpll | ⊢ ( ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ 𝑌 ) )  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  →  𝐶  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 5 |  | simplr | ⊢ ( ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ 𝑌 ) )  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  →  𝐷  ∈  ( ∞Met ‘ 𝑌 ) ) | 
						
							| 6 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 7 | 6 | cnprcl | ⊢ ( 𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 )  →  𝑃  ∈  ∪  𝐽 ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ 𝑌 ) )  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  →  𝑃  ∈  ∪  𝐽 ) | 
						
							| 9 | 1 | mopnuni | ⊢ ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 10 | 9 | ad2antrr | ⊢ ( ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ 𝑌 ) )  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 11 | 8 10 | eleqtrrd | ⊢ ( ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ 𝑌 ) )  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  →  𝑃  ∈  𝑋 ) | 
						
							| 12 | 1 2 | metcnp | ⊢ ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ 𝑌 )  ∧  𝑃  ∈  𝑋 )  →  ( 𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 )  ↔  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑧  ∈  ℝ+ ∃ 𝑥  ∈  ℝ+ ∀ 𝑦  ∈  𝑋 ( ( 𝑃 𝐶 𝑦 )  <  𝑥  →  ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑦 ) )  <  𝑧 ) ) ) ) | 
						
							| 13 | 4 5 11 12 | syl3anc | ⊢ ( ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ 𝑌 ) )  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  →  ( 𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 )  ↔  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑧  ∈  ℝ+ ∃ 𝑥  ∈  ℝ+ ∀ 𝑦  ∈  𝑋 ( ( 𝑃 𝐶 𝑦 )  <  𝑥  →  ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑦 ) )  <  𝑧 ) ) ) ) | 
						
							| 14 | 3 13 | mpbid | ⊢ ( ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ 𝑌 ) )  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  →  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑧  ∈  ℝ+ ∃ 𝑥  ∈  ℝ+ ∀ 𝑦  ∈  𝑋 ( ( 𝑃 𝐶 𝑦 )  <  𝑥  →  ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑦 ) )  <  𝑧 ) ) ) | 
						
							| 15 |  | breq2 | ⊢ ( 𝑧  =  𝐴  →  ( ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑦 ) )  <  𝑧  ↔  ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑦 ) )  <  𝐴 ) ) | 
						
							| 16 | 15 | imbi2d | ⊢ ( 𝑧  =  𝐴  →  ( ( ( 𝑃 𝐶 𝑦 )  <  𝑥  →  ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑦 ) )  <  𝑧 )  ↔  ( ( 𝑃 𝐶 𝑦 )  <  𝑥  →  ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑦 ) )  <  𝐴 ) ) ) | 
						
							| 17 | 16 | rexralbidv | ⊢ ( 𝑧  =  𝐴  →  ( ∃ 𝑥  ∈  ℝ+ ∀ 𝑦  ∈  𝑋 ( ( 𝑃 𝐶 𝑦 )  <  𝑥  →  ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑦 ) )  <  𝑧 )  ↔  ∃ 𝑥  ∈  ℝ+ ∀ 𝑦  ∈  𝑋 ( ( 𝑃 𝐶 𝑦 )  <  𝑥  →  ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑦 ) )  <  𝐴 ) ) ) | 
						
							| 18 | 17 | rspccv | ⊢ ( ∀ 𝑧  ∈  ℝ+ ∃ 𝑥  ∈  ℝ+ ∀ 𝑦  ∈  𝑋 ( ( 𝑃 𝐶 𝑦 )  <  𝑥  →  ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑦 ) )  <  𝑧 )  →  ( 𝐴  ∈  ℝ+  →  ∃ 𝑥  ∈  ℝ+ ∀ 𝑦  ∈  𝑋 ( ( 𝑃 𝐶 𝑦 )  <  𝑥  →  ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑦 ) )  <  𝐴 ) ) ) | 
						
							| 19 | 14 18 | simpl2im | ⊢ ( ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ 𝑌 ) )  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  →  ( 𝐴  ∈  ℝ+  →  ∃ 𝑥  ∈  ℝ+ ∀ 𝑦  ∈  𝑋 ( ( 𝑃 𝐶 𝑦 )  <  𝑥  →  ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑦 ) )  <  𝐴 ) ) ) | 
						
							| 20 | 19 | impr | ⊢ ( ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ 𝑌 ) )  ∧  ( 𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 )  ∧  𝐴  ∈  ℝ+ ) )  →  ∃ 𝑥  ∈  ℝ+ ∀ 𝑦  ∈  𝑋 ( ( 𝑃 𝐶 𝑦 )  <  𝑥  →  ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑦 ) )  <  𝐴 ) ) |