| Step |
Hyp |
Ref |
Expression |
| 1 |
|
modm1nep1.i |
⊢ 𝐼 = ( 0 ..^ 𝑁 ) |
| 2 |
|
eluz5nn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) → 𝑁 ∈ ℕ ) |
| 3 |
2
|
adantr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) ∧ 𝑌 ∈ 𝐼 ) → 𝑁 ∈ ℕ ) |
| 4 |
|
simpr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) ∧ 𝑌 ∈ 𝐼 ) → 𝑌 ∈ 𝐼 ) |
| 5 |
|
2z |
⊢ 2 ∈ ℤ |
| 6 |
5
|
a1i |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) ∧ 𝑌 ∈ 𝐼 ) → 2 ∈ ℤ ) |
| 7 |
|
1zzd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) ∧ 𝑌 ∈ 𝐼 ) → 1 ∈ ℤ ) |
| 8 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
| 9 |
8
|
fveq2i |
⊢ ( abs ‘ ( 2 − 1 ) ) = ( abs ‘ 1 ) |
| 10 |
|
abs1 |
⊢ ( abs ‘ 1 ) = 1 |
| 11 |
9 10
|
eqtri |
⊢ ( abs ‘ ( 2 − 1 ) ) = 1 |
| 12 |
|
eluz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) ↔ ( 5 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁 ) ) |
| 13 |
|
1red |
⊢ ( ( 5 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁 ) → 1 ∈ ℝ ) |
| 14 |
|
5re |
⊢ 5 ∈ ℝ |
| 15 |
14
|
a1i |
⊢ ( ( 5 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁 ) → 5 ∈ ℝ ) |
| 16 |
|
zre |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) |
| 17 |
16
|
3ad2ant2 |
⊢ ( ( 5 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁 ) → 𝑁 ∈ ℝ ) |
| 18 |
|
1lt5 |
⊢ 1 < 5 |
| 19 |
18
|
a1i |
⊢ ( ( 5 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁 ) → 1 < 5 ) |
| 20 |
|
simp3 |
⊢ ( ( 5 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁 ) → 5 ≤ 𝑁 ) |
| 21 |
13 15 17 19 20
|
ltletrd |
⊢ ( ( 5 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁 ) → 1 < 𝑁 ) |
| 22 |
12 21
|
sylbi |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) → 1 < 𝑁 ) |
| 23 |
|
1elfzo1 |
⊢ ( 1 ∈ ( 1 ..^ 𝑁 ) ↔ ( 𝑁 ∈ ℕ ∧ 1 < 𝑁 ) ) |
| 24 |
2 22 23
|
sylanbrc |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) → 1 ∈ ( 1 ..^ 𝑁 ) ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) ∧ 𝑌 ∈ 𝐼 ) → 1 ∈ ( 1 ..^ 𝑁 ) ) |
| 26 |
11 25
|
eqeltrid |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) ∧ 𝑌 ∈ 𝐼 ) → ( abs ‘ ( 2 − 1 ) ) ∈ ( 1 ..^ 𝑁 ) ) |
| 27 |
1
|
mod2addne |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑌 ∈ 𝐼 ∧ 2 ∈ ℤ ∧ 1 ∈ ℤ ) ∧ ( abs ‘ ( 2 − 1 ) ) ∈ ( 1 ..^ 𝑁 ) ) → ( ( 𝑌 + 2 ) mod 𝑁 ) ≠ ( ( 𝑌 + 1 ) mod 𝑁 ) ) |
| 28 |
3 4 6 7 26 27
|
syl131anc |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) ∧ 𝑌 ∈ 𝐼 ) → ( ( 𝑌 + 2 ) mod 𝑁 ) ≠ ( ( 𝑌 + 1 ) mod 𝑁 ) ) |