| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							moexexlem.1 | 
							⊢ Ⅎ 𝑦 𝜑  | 
						
						
							| 2 | 
							
								
							 | 
							moexexlem.2 | 
							⊢ Ⅎ 𝑦 ∃* 𝑥 𝜑  | 
						
						
							| 3 | 
							
								
							 | 
							moexexlem.3 | 
							⊢ Ⅎ 𝑥 ∃* 𝑦 ∃ 𝑥 ( 𝜑  ∧  𝜓 )  | 
						
						
							| 4 | 
							
								
							 | 
							nfmo1 | 
							⊢ Ⅎ 𝑥 ∃* 𝑥 𝜑  | 
						
						
							| 5 | 
							
								
							 | 
							nfa1 | 
							⊢ Ⅎ 𝑥 ∀ 𝑥 ∃* 𝑦 𝜓  | 
						
						
							| 6 | 
							
								5 3
							 | 
							nfim | 
							⊢ Ⅎ 𝑥 ( ∀ 𝑥 ∃* 𝑦 𝜓  →  ∃* 𝑦 ∃ 𝑥 ( 𝜑  ∧  𝜓 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							mopick | 
							⊢ ( ( ∃* 𝑥 𝜑  ∧  ∃ 𝑥 ( 𝜑  ∧  𝜓 ) )  →  ( 𝜑  →  𝜓 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							ex | 
							⊢ ( ∃* 𝑥 𝜑  →  ( ∃ 𝑥 ( 𝜑  ∧  𝜓 )  →  ( 𝜑  →  𝜓 ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							com23 | 
							⊢ ( ∃* 𝑥 𝜑  →  ( 𝜑  →  ( ∃ 𝑥 ( 𝜑  ∧  𝜓 )  →  𝜓 ) ) )  | 
						
						
							| 10 | 
							
								2 1 9
							 | 
							alrimd | 
							⊢ ( ∃* 𝑥 𝜑  →  ( 𝜑  →  ∀ 𝑦 ( ∃ 𝑥 ( 𝜑  ∧  𝜓 )  →  𝜓 ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							moim | 
							⊢ ( ∀ 𝑦 ( ∃ 𝑥 ( 𝜑  ∧  𝜓 )  →  𝜓 )  →  ( ∃* 𝑦 𝜓  →  ∃* 𝑦 ∃ 𝑥 ( 𝜑  ∧  𝜓 ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							spsd | 
							⊢ ( ∀ 𝑦 ( ∃ 𝑥 ( 𝜑  ∧  𝜓 )  →  𝜓 )  →  ( ∀ 𝑥 ∃* 𝑦 𝜓  →  ∃* 𝑦 ∃ 𝑥 ( 𝜑  ∧  𝜓 ) ) )  | 
						
						
							| 13 | 
							
								10 12
							 | 
							syl6 | 
							⊢ ( ∃* 𝑥 𝜑  →  ( 𝜑  →  ( ∀ 𝑥 ∃* 𝑦 𝜓  →  ∃* 𝑦 ∃ 𝑥 ( 𝜑  ∧  𝜓 ) ) ) )  | 
						
						
							| 14 | 
							
								4 6 13
							 | 
							exlimd | 
							⊢ ( ∃* 𝑥 𝜑  →  ( ∃ 𝑥 𝜑  →  ( ∀ 𝑥 ∃* 𝑦 𝜓  →  ∃* 𝑦 ∃ 𝑥 ( 𝜑  ∧  𝜓 ) ) ) )  | 
						
						
							| 15 | 
							
								1
							 | 
							nfex | 
							⊢ Ⅎ 𝑦 ∃ 𝑥 𝜑  | 
						
						
							| 16 | 
							
								
							 | 
							exsimpl | 
							⊢ ( ∃ 𝑥 ( 𝜑  ∧  𝜓 )  →  ∃ 𝑥 𝜑 )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							exlimi | 
							⊢ ( ∃ 𝑦 ∃ 𝑥 ( 𝜑  ∧  𝜓 )  →  ∃ 𝑥 𝜑 )  | 
						
						
							| 18 | 
							
								
							 | 
							nexmo | 
							⊢ ( ¬  ∃ 𝑦 ∃ 𝑥 ( 𝜑  ∧  𝜓 )  →  ∃* 𝑦 ∃ 𝑥 ( 𝜑  ∧  𝜓 ) )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							nsyl5 | 
							⊢ ( ¬  ∃ 𝑥 𝜑  →  ∃* 𝑦 ∃ 𝑥 ( 𝜑  ∧  𝜓 ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							a1d | 
							⊢ ( ¬  ∃ 𝑥 𝜑  →  ( ∀ 𝑥 ∃* 𝑦 𝜓  →  ∃* 𝑦 ∃ 𝑥 ( 𝜑  ∧  𝜓 ) ) )  | 
						
						
							| 21 | 
							
								14 20
							 | 
							pm2.61d1 | 
							⊢ ( ∃* 𝑥 𝜑  →  ( ∀ 𝑥 ∃* 𝑦 𝜓  →  ∃* 𝑦 ∃ 𝑥 ( 𝜑  ∧  𝜓 ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							imp | 
							⊢ ( ( ∃* 𝑥 𝜑  ∧  ∀ 𝑥 ∃* 𝑦 𝜓 )  →  ∃* 𝑦 ∃ 𝑥 ( 𝜑  ∧  𝜓 ) )  |