| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							equequ2 | 
							⊢ ( 𝑦  =  𝑡  →  ( 𝑥  =  𝑦  ↔  𝑥  =  𝑡 ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							imbi2d | 
							⊢ ( 𝑦  =  𝑡  →  ( ( 𝜑  →  𝑥  =  𝑦 )  ↔  ( 𝜑  →  𝑥  =  𝑡 ) ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							albidv | 
							⊢ ( 𝑦  =  𝑡  →  ( ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑦 )  ↔  ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑡 ) ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							cbvexvw | 
							⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑦 )  ↔  ∃ 𝑡 ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑡 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							equequ2 | 
							⊢ ( 𝑡  =  𝑧  →  ( 𝑥  =  𝑡  ↔  𝑥  =  𝑧 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							imbi2d | 
							⊢ ( 𝑡  =  𝑧  →  ( ( 𝜑  →  𝑥  =  𝑡 )  ↔  ( 𝜑  →  𝑥  =  𝑧 ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							albidv | 
							⊢ ( 𝑡  =  𝑧  →  ( ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑡 )  ↔  ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑧 ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							cbvexvw | 
							⊢ ( ∃ 𝑡 ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑡 )  ↔  ∃ 𝑧 ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑧 ) )  | 
						
						
							| 9 | 
							
								4 8
							 | 
							bitri | 
							⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑦 )  ↔  ∃ 𝑧 ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑧 ) )  |