| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							equequ2 | 
							 |-  ( y = t -> ( x = y <-> x = t ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							imbi2d | 
							 |-  ( y = t -> ( ( ph -> x = y ) <-> ( ph -> x = t ) ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							albidv | 
							 |-  ( y = t -> ( A. x ( ph -> x = y ) <-> A. x ( ph -> x = t ) ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							cbvexvw | 
							 |-  ( E. y A. x ( ph -> x = y ) <-> E. t A. x ( ph -> x = t ) )  | 
						
						
							| 5 | 
							
								
							 | 
							equequ2 | 
							 |-  ( t = z -> ( x = t <-> x = z ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							imbi2d | 
							 |-  ( t = z -> ( ( ph -> x = t ) <-> ( ph -> x = z ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							albidv | 
							 |-  ( t = z -> ( A. x ( ph -> x = t ) <-> A. x ( ph -> x = z ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							cbvexvw | 
							 |-  ( E. t A. x ( ph -> x = t ) <-> E. z A. x ( ph -> x = z ) )  | 
						
						
							| 9 | 
							
								4 8
							 | 
							bitri | 
							 |-  ( E. y A. x ( ph -> x = y ) <-> E. z A. x ( ph -> x = z ) )  |