| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mreclatGOOD.i |
⊢ 𝐼 = ( toInc ‘ 𝐶 ) |
| 2 |
|
mrelatlubALT.f |
⊢ 𝐹 = ( mrCls ‘ 𝐶 ) |
| 3 |
|
mrelatlubALT.l |
⊢ 𝐿 = ( lub ‘ 𝐼 ) |
| 4 |
|
simpl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) |
| 5 |
|
simpr |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) → 𝑈 ⊆ 𝐶 ) |
| 6 |
3
|
a1i |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) → 𝐿 = ( lub ‘ 𝐼 ) ) |
| 7 |
|
mreuniss |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) → ∪ 𝑈 ⊆ 𝑋 ) |
| 8 |
2
|
mrcval |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∪ 𝑈 ⊆ 𝑋 ) → ( 𝐹 ‘ ∪ 𝑈 ) = ∩ { 𝑥 ∈ 𝐶 ∣ ∪ 𝑈 ⊆ 𝑥 } ) |
| 9 |
7 8
|
syldan |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) → ( 𝐹 ‘ ∪ 𝑈 ) = ∩ { 𝑥 ∈ 𝐶 ∣ ∪ 𝑈 ⊆ 𝑥 } ) |
| 10 |
2
|
mrccl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∪ 𝑈 ⊆ 𝑋 ) → ( 𝐹 ‘ ∪ 𝑈 ) ∈ 𝐶 ) |
| 11 |
7 10
|
syldan |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) → ( 𝐹 ‘ ∪ 𝑈 ) ∈ 𝐶 ) |
| 12 |
1 4 5 6 9 11
|
ipolub |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) → ( 𝐿 ‘ 𝑈 ) = ( 𝐹 ‘ ∪ 𝑈 ) ) |