| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ipolub.i |
⊢ 𝐼 = ( toInc ‘ 𝐹 ) |
| 2 |
|
ipolub.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
| 3 |
|
ipolub.s |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐹 ) |
| 4 |
|
ipolub.u |
⊢ ( 𝜑 → 𝑈 = ( lub ‘ 𝐼 ) ) |
| 5 |
|
ipolubdm.t |
⊢ ( 𝜑 → 𝑇 = ∩ { 𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥 } ) |
| 6 |
|
ipolub.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝐹 ) |
| 7 |
|
eqid |
⊢ ( le ‘ 𝐼 ) = ( le ‘ 𝐼 ) |
| 8 |
1
|
ipobas |
⊢ ( 𝐹 ∈ 𝑉 → 𝐹 = ( Base ‘ 𝐼 ) ) |
| 9 |
2 8
|
syl |
⊢ ( 𝜑 → 𝐹 = ( Base ‘ 𝐼 ) ) |
| 10 |
1
|
ipopos |
⊢ 𝐼 ∈ Poset |
| 11 |
10
|
a1i |
⊢ ( 𝜑 → 𝐼 ∈ Poset ) |
| 12 |
|
breq1 |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 ( le ‘ 𝐼 ) 𝑇 ↔ 𝑦 ( le ‘ 𝐼 ) 𝑇 ) ) |
| 13 |
|
intubeu |
⊢ ( 𝑇 ∈ 𝐹 → ( ( ∪ 𝑆 ⊆ 𝑇 ∧ ∀ 𝑣 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑣 → 𝑇 ⊆ 𝑣 ) ) ↔ 𝑇 = ∩ { 𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥 } ) ) |
| 14 |
13
|
biimpar |
⊢ ( ( 𝑇 ∈ 𝐹 ∧ 𝑇 = ∩ { 𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥 } ) → ( ∪ 𝑆 ⊆ 𝑇 ∧ ∀ 𝑣 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑣 → 𝑇 ⊆ 𝑣 ) ) ) |
| 15 |
6 5 14
|
syl2anc |
⊢ ( 𝜑 → ( ∪ 𝑆 ⊆ 𝑇 ∧ ∀ 𝑣 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑣 → 𝑇 ⊆ 𝑣 ) ) ) |
| 16 |
1 2 3 7
|
ipolublem |
⊢ ( ( 𝜑 ∧ 𝑇 ∈ 𝐹 ) → ( ( ∪ 𝑆 ⊆ 𝑇 ∧ ∀ 𝑣 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑣 → 𝑇 ⊆ 𝑣 ) ) ↔ ( ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑇 ∧ ∀ 𝑣 ∈ 𝐹 ( ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣 → 𝑇 ( le ‘ 𝐼 ) 𝑣 ) ) ) ) |
| 17 |
6 16
|
mpdan |
⊢ ( 𝜑 → ( ( ∪ 𝑆 ⊆ 𝑇 ∧ ∀ 𝑣 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑣 → 𝑇 ⊆ 𝑣 ) ) ↔ ( ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑇 ∧ ∀ 𝑣 ∈ 𝐹 ( ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣 → 𝑇 ( le ‘ 𝐼 ) 𝑣 ) ) ) ) |
| 18 |
15 17
|
mpbid |
⊢ ( 𝜑 → ( ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑇 ∧ ∀ 𝑣 ∈ 𝐹 ( ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣 → 𝑇 ( le ‘ 𝐼 ) 𝑣 ) ) ) |
| 19 |
18
|
simpld |
⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑇 ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑇 ) |
| 21 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝑆 ) |
| 22 |
12 20 21
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ( le ‘ 𝐼 ) 𝑇 ) |
| 23 |
|
breq2 |
⊢ ( 𝑣 = 𝑧 → ( 𝑤 ( le ‘ 𝐼 ) 𝑣 ↔ 𝑤 ( le ‘ 𝐼 ) 𝑧 ) ) |
| 24 |
23
|
ralbidv |
⊢ ( 𝑣 = 𝑧 → ( ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣 ↔ ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑧 ) ) |
| 25 |
|
breq1 |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 ( le ‘ 𝐼 ) 𝑧 ↔ 𝑦 ( le ‘ 𝐼 ) 𝑧 ) ) |
| 26 |
25
|
cbvralvw |
⊢ ( ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑧 ↔ ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐼 ) 𝑧 ) |
| 27 |
24 26
|
bitrdi |
⊢ ( 𝑣 = 𝑧 → ( ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣 ↔ ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐼 ) 𝑧 ) ) |
| 28 |
|
breq2 |
⊢ ( 𝑣 = 𝑧 → ( 𝑇 ( le ‘ 𝐼 ) 𝑣 ↔ 𝑇 ( le ‘ 𝐼 ) 𝑧 ) ) |
| 29 |
27 28
|
imbi12d |
⊢ ( 𝑣 = 𝑧 → ( ( ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣 → 𝑇 ( le ‘ 𝐼 ) 𝑣 ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐼 ) 𝑧 → 𝑇 ( le ‘ 𝐼 ) 𝑧 ) ) ) |
| 30 |
18
|
simprd |
⊢ ( 𝜑 → ∀ 𝑣 ∈ 𝐹 ( ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣 → 𝑇 ( le ‘ 𝐼 ) 𝑣 ) ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐹 ) → ∀ 𝑣 ∈ 𝐹 ( ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣 → 𝑇 ( le ‘ 𝐼 ) 𝑣 ) ) |
| 32 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐹 ) → 𝑧 ∈ 𝐹 ) |
| 33 |
29 31 32
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐹 ) → ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐼 ) 𝑧 → 𝑇 ( le ‘ 𝐼 ) 𝑧 ) ) |
| 34 |
33
|
3impia |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐹 ∧ ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐼 ) 𝑧 ) → 𝑇 ( le ‘ 𝐼 ) 𝑧 ) |
| 35 |
7 9 4 11 3 6 22 34
|
poslubdg |
⊢ ( 𝜑 → ( 𝑈 ‘ 𝑆 ) = 𝑇 ) |