| Step |
Hyp |
Ref |
Expression |
| 1 |
|
poslubdg.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
poslubdg.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) |
| 3 |
|
poslubdg.u |
⊢ ( 𝜑 → 𝑈 = ( lub ‘ 𝐾 ) ) |
| 4 |
|
poslubdg.k |
⊢ ( 𝜑 → 𝐾 ∈ Poset ) |
| 5 |
|
poslubdg.s |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
| 6 |
|
poslubdg.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝐵 ) |
| 7 |
|
poslubdg.ub |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ≤ 𝑇 ) |
| 8 |
|
poslubdg.le |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 ) → 𝑇 ≤ 𝑦 ) |
| 9 |
3
|
fveq1d |
⊢ ( 𝜑 → ( 𝑈 ‘ 𝑆 ) = ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ) |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 11 |
|
eqid |
⊢ ( lub ‘ 𝐾 ) = ( lub ‘ 𝐾 ) |
| 12 |
5 2
|
sseqtrd |
⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝐾 ) ) |
| 13 |
6 2
|
eleqtrd |
⊢ ( 𝜑 → 𝑇 ∈ ( Base ‘ 𝐾 ) ) |
| 14 |
2
|
eleq2d |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) |
| 15 |
14
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → 𝑦 ∈ 𝐵 ) |
| 16 |
15
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ∧ ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 ) → 𝑦 ∈ 𝐵 ) |
| 17 |
16 8
|
syld3an2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ∧ ∀ 𝑥 ∈ 𝑆 𝑥 ≤ 𝑦 ) → 𝑇 ≤ 𝑦 ) |
| 18 |
1 10 11 4 12 13 7 17
|
poslubd |
⊢ ( 𝜑 → ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) = 𝑇 ) |
| 19 |
9 18
|
eqtrd |
⊢ ( 𝜑 → ( 𝑈 ‘ 𝑆 ) = 𝑇 ) |