Step |
Hyp |
Ref |
Expression |
1 |
|
mreclat.i |
⊢ 𝐼 = ( toInc ‘ 𝐶 ) |
2 |
|
mrelatlub.f |
⊢ 𝐹 = ( mrCls ‘ 𝐶 ) |
3 |
|
mrelatlub.l |
⊢ 𝐿 = ( lub ‘ 𝐼 ) |
4 |
|
eqid |
⊢ ( le ‘ 𝐼 ) = ( le ‘ 𝐼 ) |
5 |
1
|
ipobas |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐶 = ( Base ‘ 𝐼 ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) → 𝐶 = ( Base ‘ 𝐼 ) ) |
7 |
3
|
a1i |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) → 𝐿 = ( lub ‘ 𝐼 ) ) |
8 |
1
|
ipopos |
⊢ 𝐼 ∈ Poset |
9 |
8
|
a1i |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) → 𝐼 ∈ Poset ) |
10 |
|
simpr |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) → 𝑈 ⊆ 𝐶 ) |
11 |
|
uniss |
⊢ ( 𝑈 ⊆ 𝐶 → ∪ 𝑈 ⊆ ∪ 𝐶 ) |
12 |
11
|
adantl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) → ∪ 𝑈 ⊆ ∪ 𝐶 ) |
13 |
|
mreuni |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ∪ 𝐶 = 𝑋 ) |
14 |
13
|
adantr |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) → ∪ 𝐶 = 𝑋 ) |
15 |
12 14
|
sseqtrd |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) → ∪ 𝑈 ⊆ 𝑋 ) |
16 |
2
|
mrccl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∪ 𝑈 ⊆ 𝑋 ) → ( 𝐹 ‘ ∪ 𝑈 ) ∈ 𝐶 ) |
17 |
15 16
|
syldan |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) → ( 𝐹 ‘ ∪ 𝑈 ) ∈ 𝐶 ) |
18 |
|
elssuni |
⊢ ( 𝑥 ∈ 𝑈 → 𝑥 ⊆ ∪ 𝑈 ) |
19 |
2
|
mrcssid |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∪ 𝑈 ⊆ 𝑋 ) → ∪ 𝑈 ⊆ ( 𝐹 ‘ ∪ 𝑈 ) ) |
20 |
15 19
|
syldan |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) → ∪ 𝑈 ⊆ ( 𝐹 ‘ ∪ 𝑈 ) ) |
21 |
18 20
|
sylan9ssr |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ⊆ ( 𝐹 ‘ ∪ 𝑈 ) ) |
22 |
|
simpll |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) ∧ 𝑥 ∈ 𝑈 ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) |
23 |
10
|
sselda |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ∈ 𝐶 ) |
24 |
17
|
adantr |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) ∧ 𝑥 ∈ 𝑈 ) → ( 𝐹 ‘ ∪ 𝑈 ) ∈ 𝐶 ) |
25 |
1 4
|
ipole |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐶 ∧ ( 𝐹 ‘ ∪ 𝑈 ) ∈ 𝐶 ) → ( 𝑥 ( le ‘ 𝐼 ) ( 𝐹 ‘ ∪ 𝑈 ) ↔ 𝑥 ⊆ ( 𝐹 ‘ ∪ 𝑈 ) ) ) |
26 |
22 23 24 25
|
syl3anc |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) ∧ 𝑥 ∈ 𝑈 ) → ( 𝑥 ( le ‘ 𝐼 ) ( 𝐹 ‘ ∪ 𝑈 ) ↔ 𝑥 ⊆ ( 𝐹 ‘ ∪ 𝑈 ) ) ) |
27 |
21 26
|
mpbird |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ( le ‘ 𝐼 ) ( 𝐹 ‘ ∪ 𝑈 ) ) |
28 |
|
simp1l |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) ∧ 𝑦 ∈ 𝐶 ∧ ∀ 𝑥 ∈ 𝑈 𝑥 ( le ‘ 𝐼 ) 𝑦 ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) |
29 |
|
simplll |
⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑈 ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) |
30 |
|
simplr |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) ∧ 𝑦 ∈ 𝐶 ) → 𝑈 ⊆ 𝐶 ) |
31 |
30
|
sselda |
⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ∈ 𝐶 ) |
32 |
|
simplr |
⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑈 ) → 𝑦 ∈ 𝐶 ) |
33 |
1 4
|
ipole |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 ( le ‘ 𝐼 ) 𝑦 ↔ 𝑥 ⊆ 𝑦 ) ) |
34 |
29 31 32 33
|
syl3anc |
⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑈 ) → ( 𝑥 ( le ‘ 𝐼 ) 𝑦 ↔ 𝑥 ⊆ 𝑦 ) ) |
35 |
34
|
biimpd |
⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑥 ∈ 𝑈 ) → ( 𝑥 ( le ‘ 𝐼 ) 𝑦 → 𝑥 ⊆ 𝑦 ) ) |
36 |
35
|
ralimdva |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) ∧ 𝑦 ∈ 𝐶 ) → ( ∀ 𝑥 ∈ 𝑈 𝑥 ( le ‘ 𝐼 ) 𝑦 → ∀ 𝑥 ∈ 𝑈 𝑥 ⊆ 𝑦 ) ) |
37 |
36
|
3impia |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) ∧ 𝑦 ∈ 𝐶 ∧ ∀ 𝑥 ∈ 𝑈 𝑥 ( le ‘ 𝐼 ) 𝑦 ) → ∀ 𝑥 ∈ 𝑈 𝑥 ⊆ 𝑦 ) |
38 |
|
unissb |
⊢ ( ∪ 𝑈 ⊆ 𝑦 ↔ ∀ 𝑥 ∈ 𝑈 𝑥 ⊆ 𝑦 ) |
39 |
37 38
|
sylibr |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) ∧ 𝑦 ∈ 𝐶 ∧ ∀ 𝑥 ∈ 𝑈 𝑥 ( le ‘ 𝐼 ) 𝑦 ) → ∪ 𝑈 ⊆ 𝑦 ) |
40 |
|
simp2 |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) ∧ 𝑦 ∈ 𝐶 ∧ ∀ 𝑥 ∈ 𝑈 𝑥 ( le ‘ 𝐼 ) 𝑦 ) → 𝑦 ∈ 𝐶 ) |
41 |
2
|
mrcsscl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∪ 𝑈 ⊆ 𝑦 ∧ 𝑦 ∈ 𝐶 ) → ( 𝐹 ‘ ∪ 𝑈 ) ⊆ 𝑦 ) |
42 |
28 39 40 41
|
syl3anc |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) ∧ 𝑦 ∈ 𝐶 ∧ ∀ 𝑥 ∈ 𝑈 𝑥 ( le ‘ 𝐼 ) 𝑦 ) → ( 𝐹 ‘ ∪ 𝑈 ) ⊆ 𝑦 ) |
43 |
17
|
3ad2ant1 |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) ∧ 𝑦 ∈ 𝐶 ∧ ∀ 𝑥 ∈ 𝑈 𝑥 ( le ‘ 𝐼 ) 𝑦 ) → ( 𝐹 ‘ ∪ 𝑈 ) ∈ 𝐶 ) |
44 |
1 4
|
ipole |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝐹 ‘ ∪ 𝑈 ) ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) → ( ( 𝐹 ‘ ∪ 𝑈 ) ( le ‘ 𝐼 ) 𝑦 ↔ ( 𝐹 ‘ ∪ 𝑈 ) ⊆ 𝑦 ) ) |
45 |
28 43 40 44
|
syl3anc |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) ∧ 𝑦 ∈ 𝐶 ∧ ∀ 𝑥 ∈ 𝑈 𝑥 ( le ‘ 𝐼 ) 𝑦 ) → ( ( 𝐹 ‘ ∪ 𝑈 ) ( le ‘ 𝐼 ) 𝑦 ↔ ( 𝐹 ‘ ∪ 𝑈 ) ⊆ 𝑦 ) ) |
46 |
42 45
|
mpbird |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) ∧ 𝑦 ∈ 𝐶 ∧ ∀ 𝑥 ∈ 𝑈 𝑥 ( le ‘ 𝐼 ) 𝑦 ) → ( 𝐹 ‘ ∪ 𝑈 ) ( le ‘ 𝐼 ) 𝑦 ) |
47 |
4 6 7 9 10 17 27 46
|
poslubdg |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝐶 ) → ( 𝐿 ‘ 𝑈 ) = ( 𝐹 ‘ ∪ 𝑈 ) ) |