Metamath Proof Explorer


Theorem mreclatBAD

Description: A Moore space is a complete lattice under inclusion. (Contributed by Stefan O'Rear, 31-Jan-2015) TODO ( df-riota update): Reprove using isclat instead of the isclatBAD. hypothesis. See commented-out mreclat above.

Ref Expression
Hypotheses mreclat.i 𝐼 = ( toInc ‘ 𝐶 )
isclatBAD. ( 𝐼 ∈ CLat ↔ ( 𝐼 ∈ Poset ∧ ∀ 𝑥 ( 𝑥 ⊆ ( Base ‘ 𝐼 ) → ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ) ) ) )
Assertion mreclatBAD ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐼 ∈ CLat )

Proof

Step Hyp Ref Expression
1 mreclat.i 𝐼 = ( toInc ‘ 𝐶 )
2 isclatBAD. ( 𝐼 ∈ CLat ↔ ( 𝐼 ∈ Poset ∧ ∀ 𝑥 ( 𝑥 ⊆ ( Base ‘ 𝐼 ) → ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ) ) ) )
3 1 ipopos 𝐼 ∈ Poset
4 3 a1i ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐼 ∈ Poset )
5 eqid ( mrCls ‘ 𝐶 ) = ( mrCls ‘ 𝐶 )
6 eqid ( lub ‘ 𝐼 ) = ( lub ‘ 𝐼 )
7 1 5 6 mrelatlub ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥𝐶 ) → ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) = ( ( mrCls ‘ 𝐶 ) ‘ 𝑥 ) )
8 uniss ( 𝑥𝐶 𝑥 𝐶 )
9 8 adantl ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥𝐶 ) → 𝑥 𝐶 )
10 mreuni ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐶 = 𝑋 )
11 10 adantr ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥𝐶 ) → 𝐶 = 𝑋 )
12 9 11 sseqtrd ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥𝐶 ) → 𝑥𝑋 )
13 5 mrccl ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥𝑋 ) → ( ( mrCls ‘ 𝐶 ) ‘ 𝑥 ) ∈ 𝐶 )
14 12 13 syldan ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥𝐶 ) → ( ( mrCls ‘ 𝐶 ) ‘ 𝑥 ) ∈ 𝐶 )
15 7 14 eqeltrd ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥𝐶 ) → ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 )
16 fveq2 ( 𝑥 = ∅ → ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) = ( ( glb ‘ 𝐼 ) ‘ ∅ ) )
17 16 adantl ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥𝐶 ) ∧ 𝑥 = ∅ ) → ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) = ( ( glb ‘ 𝐼 ) ‘ ∅ ) )
18 eqid ( glb ‘ 𝐼 ) = ( glb ‘ 𝐼 )
19 1 18 mrelatglb0 ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( ( glb ‘ 𝐼 ) ‘ ∅ ) = 𝑋 )
20 19 ad2antrr ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥𝐶 ) ∧ 𝑥 = ∅ ) → ( ( glb ‘ 𝐼 ) ‘ ∅ ) = 𝑋 )
21 17 20 eqtrd ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥𝐶 ) ∧ 𝑥 = ∅ ) → ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) = 𝑋 )
22 mre1cl ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝑋𝐶 )
23 22 ad2antrr ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥𝐶 ) ∧ 𝑥 = ∅ ) → 𝑋𝐶 )
24 21 23 eqeltrd ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥𝐶 ) ∧ 𝑥 = ∅ ) → ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 )
25 1 18 mrelatglb ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥𝐶𝑥 ≠ ∅ ) → ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) = 𝑥 )
26 mreintcl ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥𝐶𝑥 ≠ ∅ ) → 𝑥𝐶 )
27 25 26 eqeltrd ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥𝐶𝑥 ≠ ∅ ) → ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 )
28 27 3expa ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥𝐶 ) ∧ 𝑥 ≠ ∅ ) → ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 )
29 24 28 pm2.61dane ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥𝐶 ) → ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 )
30 15 29 jca ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥𝐶 ) → ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ) )
31 30 ex ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑥𝐶 → ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ) ) )
32 1 ipobas ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐶 = ( Base ‘ 𝐼 ) )
33 sseq2 ( 𝐶 = ( Base ‘ 𝐼 ) → ( 𝑥𝐶𝑥 ⊆ ( Base ‘ 𝐼 ) ) )
34 eleq2 ( 𝐶 = ( Base ‘ 𝐼 ) → ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ↔ ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ) )
35 eleq2 ( 𝐶 = ( Base ‘ 𝐼 ) → ( ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ↔ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ) )
36 34 35 anbi12d ( 𝐶 = ( Base ‘ 𝐼 ) → ( ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ) ↔ ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ) ) )
37 33 36 imbi12d ( 𝐶 = ( Base ‘ 𝐼 ) → ( ( 𝑥𝐶 → ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ) ) ↔ ( 𝑥 ⊆ ( Base ‘ 𝐼 ) → ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ) ) ) )
38 32 37 syl ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( ( 𝑥𝐶 → ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ) ) ↔ ( 𝑥 ⊆ ( Base ‘ 𝐼 ) → ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ) ) ) )
39 31 38 mpbid ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑥 ⊆ ( Base ‘ 𝐼 ) → ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ) ) )
40 39 alrimiv ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ∀ 𝑥 ( 𝑥 ⊆ ( Base ‘ 𝐼 ) → ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ) ) )
41 4 40 2 sylanbrc ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐼 ∈ CLat )