| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mreclat.i |
⊢ 𝐼 = ( toInc ‘ 𝐶 ) |
| 2 |
|
isclatBAD. |
⊢ ( 𝐼 ∈ CLat ↔ ( 𝐼 ∈ Poset ∧ ∀ 𝑥 ( 𝑥 ⊆ ( Base ‘ 𝐼 ) → ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ) ) ) ) |
| 3 |
1
|
ipopos |
⊢ 𝐼 ∈ Poset |
| 4 |
3
|
a1i |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐼 ∈ Poset ) |
| 5 |
|
eqid |
⊢ ( mrCls ‘ 𝐶 ) = ( mrCls ‘ 𝐶 ) |
| 6 |
|
eqid |
⊢ ( lub ‘ 𝐼 ) = ( lub ‘ 𝐼 ) |
| 7 |
1 5 6
|
mrelatlub |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) = ( ( mrCls ‘ 𝐶 ) ‘ ∪ 𝑥 ) ) |
| 8 |
|
uniss |
⊢ ( 𝑥 ⊆ 𝐶 → ∪ 𝑥 ⊆ ∪ 𝐶 ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → ∪ 𝑥 ⊆ ∪ 𝐶 ) |
| 10 |
|
mreuni |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ∪ 𝐶 = 𝑋 ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → ∪ 𝐶 = 𝑋 ) |
| 12 |
9 11
|
sseqtrd |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → ∪ 𝑥 ⊆ 𝑋 ) |
| 13 |
5
|
mrccl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∪ 𝑥 ⊆ 𝑋 ) → ( ( mrCls ‘ 𝐶 ) ‘ ∪ 𝑥 ) ∈ 𝐶 ) |
| 14 |
12 13
|
syldan |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → ( ( mrCls ‘ 𝐶 ) ‘ ∪ 𝑥 ) ∈ 𝐶 ) |
| 15 |
7 14
|
eqeltrd |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ) |
| 16 |
|
fveq2 |
⊢ ( 𝑥 = ∅ → ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) = ( ( glb ‘ 𝐼 ) ‘ ∅ ) ) |
| 17 |
16
|
adantl |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) ∧ 𝑥 = ∅ ) → ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) = ( ( glb ‘ 𝐼 ) ‘ ∅ ) ) |
| 18 |
|
eqid |
⊢ ( glb ‘ 𝐼 ) = ( glb ‘ 𝐼 ) |
| 19 |
1 18
|
mrelatglb0 |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( ( glb ‘ 𝐼 ) ‘ ∅ ) = 𝑋 ) |
| 20 |
19
|
ad2antrr |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) ∧ 𝑥 = ∅ ) → ( ( glb ‘ 𝐼 ) ‘ ∅ ) = 𝑋 ) |
| 21 |
17 20
|
eqtrd |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) ∧ 𝑥 = ∅ ) → ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) = 𝑋 ) |
| 22 |
|
mre1cl |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝑋 ∈ 𝐶 ) |
| 23 |
22
|
ad2antrr |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) ∧ 𝑥 = ∅ ) → 𝑋 ∈ 𝐶 ) |
| 24 |
21 23
|
eqeltrd |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) ∧ 𝑥 = ∅ ) → ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ) |
| 25 |
1 18
|
mrelatglb |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) → ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) = ∩ 𝑥 ) |
| 26 |
|
mreintcl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) → ∩ 𝑥 ∈ 𝐶 ) |
| 27 |
25 26
|
eqeltrd |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) → ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ) |
| 28 |
27
|
3expa |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) ∧ 𝑥 ≠ ∅ ) → ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ) |
| 29 |
24 28
|
pm2.61dane |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ) |
| 30 |
15 29
|
jca |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ) ) |
| 31 |
30
|
ex |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑥 ⊆ 𝐶 → ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ) ) ) |
| 32 |
1
|
ipobas |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐶 = ( Base ‘ 𝐼 ) ) |
| 33 |
|
sseq2 |
⊢ ( 𝐶 = ( Base ‘ 𝐼 ) → ( 𝑥 ⊆ 𝐶 ↔ 𝑥 ⊆ ( Base ‘ 𝐼 ) ) ) |
| 34 |
|
eleq2 |
⊢ ( 𝐶 = ( Base ‘ 𝐼 ) → ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ↔ ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ) ) |
| 35 |
|
eleq2 |
⊢ ( 𝐶 = ( Base ‘ 𝐼 ) → ( ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ↔ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ) ) |
| 36 |
34 35
|
anbi12d |
⊢ ( 𝐶 = ( Base ‘ 𝐼 ) → ( ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ) ↔ ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ) ) ) |
| 37 |
33 36
|
imbi12d |
⊢ ( 𝐶 = ( Base ‘ 𝐼 ) → ( ( 𝑥 ⊆ 𝐶 → ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ) ) ↔ ( 𝑥 ⊆ ( Base ‘ 𝐼 ) → ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ) ) ) ) |
| 38 |
32 37
|
syl |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( ( 𝑥 ⊆ 𝐶 → ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐶 ) ) ↔ ( 𝑥 ⊆ ( Base ‘ 𝐼 ) → ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ) ) ) ) |
| 39 |
31 38
|
mpbid |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑥 ⊆ ( Base ‘ 𝐼 ) → ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ) ) ) |
| 40 |
39
|
alrimiv |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ∀ 𝑥 ( 𝑥 ⊆ ( Base ‘ 𝐼 ) → ( ( ( lub ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ∧ ( ( glb ‘ 𝐼 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐼 ) ) ) ) |
| 41 |
4 40 2
|
sylanbrc |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐼 ∈ CLat ) |