| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mreclatGOOD.i |
⊢ 𝐼 = ( toInc ‘ 𝐶 ) |
| 2 |
1
|
ipobas |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐶 = ( Base ‘ 𝐼 ) ) |
| 3 |
|
eqidd |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( lub ‘ 𝐼 ) = ( lub ‘ 𝐼 ) ) |
| 4 |
|
eqidd |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( glb ‘ 𝐼 ) = ( glb ‘ 𝐼 ) ) |
| 5 |
1
|
ipopos |
⊢ 𝐼 ∈ Poset |
| 6 |
5
|
a1i |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐼 ∈ Poset ) |
| 7 |
|
mreuniss |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → ∪ 𝑥 ⊆ 𝑋 ) |
| 8 |
|
eqid |
⊢ ( mrCls ‘ 𝐶 ) = ( mrCls ‘ 𝐶 ) |
| 9 |
8
|
mrccl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∪ 𝑥 ⊆ 𝑋 ) → ( ( mrCls ‘ 𝐶 ) ‘ ∪ 𝑥 ) ∈ 𝐶 ) |
| 10 |
7 9
|
syldan |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → ( ( mrCls ‘ 𝐶 ) ‘ ∪ 𝑥 ) ∈ 𝐶 ) |
| 11 |
|
simpl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) |
| 12 |
|
simpr |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → 𝑥 ⊆ 𝐶 ) |
| 13 |
|
eqidd |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → ( lub ‘ 𝐼 ) = ( lub ‘ 𝐼 ) ) |
| 14 |
8
|
mrcval |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∪ 𝑥 ⊆ 𝑋 ) → ( ( mrCls ‘ 𝐶 ) ‘ ∪ 𝑥 ) = ∩ { 𝑦 ∈ 𝐶 ∣ ∪ 𝑥 ⊆ 𝑦 } ) |
| 15 |
7 14
|
syldan |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → ( ( mrCls ‘ 𝐶 ) ‘ ∪ 𝑥 ) = ∩ { 𝑦 ∈ 𝐶 ∣ ∪ 𝑥 ⊆ 𝑦 } ) |
| 16 |
1 11 12 13 15
|
ipolubdm |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → ( 𝑥 ∈ dom ( lub ‘ 𝐼 ) ↔ ( ( mrCls ‘ 𝐶 ) ‘ ∪ 𝑥 ) ∈ 𝐶 ) ) |
| 17 |
10 16
|
mpbird |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → 𝑥 ∈ dom ( lub ‘ 𝐼 ) ) |
| 18 |
|
ssv |
⊢ 𝑦 ⊆ V |
| 19 |
|
int0 |
⊢ ∩ ∅ = V |
| 20 |
18 19
|
sseqtrri |
⊢ 𝑦 ⊆ ∩ ∅ |
| 21 |
|
simplr |
⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) ∧ 𝑥 = ∅ ) ∧ 𝑦 ∈ 𝐶 ) → 𝑥 = ∅ ) |
| 22 |
21
|
inteqd |
⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) ∧ 𝑥 = ∅ ) ∧ 𝑦 ∈ 𝐶 ) → ∩ 𝑥 = ∩ ∅ ) |
| 23 |
20 22
|
sseqtrrid |
⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) ∧ 𝑥 = ∅ ) ∧ 𝑦 ∈ 𝐶 ) → 𝑦 ⊆ ∩ 𝑥 ) |
| 24 |
23
|
rabeqcda |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) ∧ 𝑥 = ∅ ) → { 𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥 } = 𝐶 ) |
| 25 |
24
|
unieqd |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) ∧ 𝑥 = ∅ ) → ∪ { 𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥 } = ∪ 𝐶 ) |
| 26 |
|
mreuni |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ∪ 𝐶 = 𝑋 ) |
| 27 |
|
mre1cl |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝑋 ∈ 𝐶 ) |
| 28 |
26 27
|
eqeltrd |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ∪ 𝐶 ∈ 𝐶 ) |
| 29 |
28
|
ad2antrr |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) ∧ 𝑥 = ∅ ) → ∪ 𝐶 ∈ 𝐶 ) |
| 30 |
25 29
|
eqeltrd |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) ∧ 𝑥 = ∅ ) → ∪ { 𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥 } ∈ 𝐶 ) |
| 31 |
|
mreintcl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) → ∩ 𝑥 ∈ 𝐶 ) |
| 32 |
|
unimax |
⊢ ( ∩ 𝑥 ∈ 𝐶 → ∪ { 𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥 } = ∩ 𝑥 ) |
| 33 |
31 32
|
syl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) → ∪ { 𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥 } = ∩ 𝑥 ) |
| 34 |
33 31
|
eqeltrd |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) → ∪ { 𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥 } ∈ 𝐶 ) |
| 35 |
34
|
3expa |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) ∧ 𝑥 ≠ ∅ ) → ∪ { 𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥 } ∈ 𝐶 ) |
| 36 |
30 35
|
pm2.61dane |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → ∪ { 𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥 } ∈ 𝐶 ) |
| 37 |
|
eqidd |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → ( glb ‘ 𝐼 ) = ( glb ‘ 𝐼 ) ) |
| 38 |
|
eqidd |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → ∪ { 𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥 } = ∪ { 𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥 } ) |
| 39 |
1 11 12 37 38
|
ipoglbdm |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → ( 𝑥 ∈ dom ( glb ‘ 𝐼 ) ↔ ∪ { 𝑦 ∈ 𝐶 ∣ 𝑦 ⊆ ∩ 𝑥 } ∈ 𝐶 ) ) |
| 40 |
36 39
|
mpbird |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ) → 𝑥 ∈ dom ( glb ‘ 𝐼 ) ) |
| 41 |
2 3 4 6 17 40
|
isclatd |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐼 ∈ CLat ) |