| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ipolub.i |
⊢ 𝐼 = ( toInc ‘ 𝐹 ) |
| 2 |
|
ipolub.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
| 3 |
|
ipolub.s |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐹 ) |
| 4 |
|
ipoglb.g |
⊢ ( 𝜑 → 𝐺 = ( glb ‘ 𝐼 ) ) |
| 5 |
|
ipoglbdm.t |
⊢ ( 𝜑 → 𝑇 = ∪ { 𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆 } ) |
| 6 |
1
|
ipobas |
⊢ ( 𝐹 ∈ 𝑉 → 𝐹 = ( Base ‘ 𝐼 ) ) |
| 7 |
2 6
|
syl |
⊢ ( 𝜑 → 𝐹 = ( Base ‘ 𝐼 ) ) |
| 8 |
|
eqidd |
⊢ ( 𝜑 → ( le ‘ 𝐼 ) = ( le ‘ 𝐼 ) ) |
| 9 |
|
eqid |
⊢ ( le ‘ 𝐼 ) = ( le ‘ 𝐼 ) |
| 10 |
1 2 3 9
|
ipoglblem |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐹 ) → ( ( 𝑤 ⊆ ∩ 𝑆 ∧ ∀ 𝑧 ∈ 𝐹 ( 𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤 ) ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑦 ∧ ∀ 𝑧 ∈ 𝐹 ( ∀ 𝑦 ∈ 𝑆 𝑧 ( le ‘ 𝐼 ) 𝑦 → 𝑧 ( le ‘ 𝐼 ) 𝑤 ) ) ) ) |
| 11 |
1
|
ipopos |
⊢ 𝐼 ∈ Poset |
| 12 |
11
|
a1i |
⊢ ( 𝜑 → 𝐼 ∈ Poset ) |
| 13 |
7 8 4 10 12
|
glbeldm2d |
⊢ ( 𝜑 → ( 𝑆 ∈ dom 𝐺 ↔ ( 𝑆 ⊆ 𝐹 ∧ ∃ 𝑤 ∈ 𝐹 ( 𝑤 ⊆ ∩ 𝑆 ∧ ∀ 𝑧 ∈ 𝐹 ( 𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤 ) ) ) ) ) |
| 14 |
3 13
|
mpbirand |
⊢ ( 𝜑 → ( 𝑆 ∈ dom 𝐺 ↔ ∃ 𝑤 ∈ 𝐹 ( 𝑤 ⊆ ∩ 𝑆 ∧ ∀ 𝑧 ∈ 𝐹 ( 𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤 ) ) ) ) |
| 15 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐹 ) ∧ ( 𝑤 ⊆ ∩ 𝑆 ∧ ∀ 𝑧 ∈ 𝐹 ( 𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤 ) ) ) → 𝑇 = ∪ { 𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆 } ) |
| 16 |
|
unilbeu |
⊢ ( 𝑤 ∈ 𝐹 → ( ( 𝑤 ⊆ ∩ 𝑆 ∧ ∀ 𝑧 ∈ 𝐹 ( 𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤 ) ) ↔ 𝑤 = ∪ { 𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆 } ) ) |
| 17 |
16
|
biimpa |
⊢ ( ( 𝑤 ∈ 𝐹 ∧ ( 𝑤 ⊆ ∩ 𝑆 ∧ ∀ 𝑧 ∈ 𝐹 ( 𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤 ) ) ) → 𝑤 = ∪ { 𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆 } ) |
| 18 |
17
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐹 ) ∧ ( 𝑤 ⊆ ∩ 𝑆 ∧ ∀ 𝑧 ∈ 𝐹 ( 𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤 ) ) ) → 𝑤 = ∪ { 𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆 } ) |
| 19 |
15 18
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐹 ) ∧ ( 𝑤 ⊆ ∩ 𝑆 ∧ ∀ 𝑧 ∈ 𝐹 ( 𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤 ) ) ) → 𝑇 = 𝑤 ) |
| 20 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐹 ) ∧ ( 𝑤 ⊆ ∩ 𝑆 ∧ ∀ 𝑧 ∈ 𝐹 ( 𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤 ) ) ) → 𝑤 ∈ 𝐹 ) |
| 21 |
19 20
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐹 ) ∧ ( 𝑤 ⊆ ∩ 𝑆 ∧ ∀ 𝑧 ∈ 𝐹 ( 𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤 ) ) ) → 𝑇 ∈ 𝐹 ) |
| 22 |
21
|
ex |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐹 ) → ( ( 𝑤 ⊆ ∩ 𝑆 ∧ ∀ 𝑧 ∈ 𝐹 ( 𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤 ) ) → 𝑇 ∈ 𝐹 ) ) |
| 23 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑇 ∈ 𝐹 ) → 𝑇 ∈ 𝐹 ) |
| 24 |
|
unilbeu |
⊢ ( 𝑇 ∈ 𝐹 → ( ( 𝑇 ⊆ ∩ 𝑆 ∧ ∀ 𝑧 ∈ 𝐹 ( 𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇 ) ) ↔ 𝑇 = ∪ { 𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆 } ) ) |
| 25 |
24
|
biimparc |
⊢ ( ( 𝑇 = ∪ { 𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆 } ∧ 𝑇 ∈ 𝐹 ) → ( 𝑇 ⊆ ∩ 𝑆 ∧ ∀ 𝑧 ∈ 𝐹 ( 𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇 ) ) ) |
| 26 |
5 25
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑇 ∈ 𝐹 ) → ( 𝑇 ⊆ ∩ 𝑆 ∧ ∀ 𝑧 ∈ 𝐹 ( 𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇 ) ) ) |
| 27 |
|
sseq1 |
⊢ ( 𝑤 = 𝑇 → ( 𝑤 ⊆ ∩ 𝑆 ↔ 𝑇 ⊆ ∩ 𝑆 ) ) |
| 28 |
|
sseq2 |
⊢ ( 𝑤 = 𝑇 → ( 𝑧 ⊆ 𝑤 ↔ 𝑧 ⊆ 𝑇 ) ) |
| 29 |
28
|
imbi2d |
⊢ ( 𝑤 = 𝑇 → ( ( 𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤 ) ↔ ( 𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇 ) ) ) |
| 30 |
29
|
ralbidv |
⊢ ( 𝑤 = 𝑇 → ( ∀ 𝑧 ∈ 𝐹 ( 𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤 ) ↔ ∀ 𝑧 ∈ 𝐹 ( 𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇 ) ) ) |
| 31 |
27 30
|
anbi12d |
⊢ ( 𝑤 = 𝑇 → ( ( 𝑤 ⊆ ∩ 𝑆 ∧ ∀ 𝑧 ∈ 𝐹 ( 𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤 ) ) ↔ ( 𝑇 ⊆ ∩ 𝑆 ∧ ∀ 𝑧 ∈ 𝐹 ( 𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇 ) ) ) ) |
| 32 |
22 23 26 31
|
rspceb2dv |
⊢ ( 𝜑 → ( ∃ 𝑤 ∈ 𝐹 ( 𝑤 ⊆ ∩ 𝑆 ∧ ∀ 𝑧 ∈ 𝐹 ( 𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑤 ) ) ↔ 𝑇 ∈ 𝐹 ) ) |
| 33 |
14 32
|
bitrd |
⊢ ( 𝜑 → ( 𝑆 ∈ dom 𝐺 ↔ 𝑇 ∈ 𝐹 ) ) |