| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sseq1 |
⊢ ( 𝑧 = 𝐶 → ( 𝑧 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐴 ) ) |
| 2 |
|
simpll |
⊢ ( ( ( 𝐶 ∈ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶 ) ) → 𝐶 ∈ 𝐵 ) |
| 3 |
|
simplr |
⊢ ( ( ( 𝐶 ∈ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶 ) ) → 𝐶 ⊆ 𝐴 ) |
| 4 |
1 2 3
|
elrabd |
⊢ ( ( ( 𝐶 ∈ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶 ) ) → 𝐶 ∈ { 𝑧 ∈ 𝐵 ∣ 𝑧 ⊆ 𝐴 } ) |
| 5 |
|
sseq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐴 ) ) |
| 6 |
5
|
cbvrabv |
⊢ { 𝑧 ∈ 𝐵 ∣ 𝑧 ⊆ 𝐴 } = { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } |
| 7 |
4 6
|
eleqtrdi |
⊢ ( ( ( 𝐶 ∈ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶 ) ) → 𝐶 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ) |
| 8 |
|
elssuni |
⊢ ( 𝐶 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } → 𝐶 ⊆ ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ) |
| 9 |
7 8
|
syl |
⊢ ( ( ( 𝐶 ∈ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶 ) ) → 𝐶 ⊆ ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ) |
| 10 |
|
unissb |
⊢ ( ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ⊆ 𝐶 ↔ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } 𝑦 ⊆ 𝐶 ) |
| 11 |
|
sseq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴 ) ) |
| 12 |
11
|
ralrab |
⊢ ( ∀ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } 𝑦 ⊆ 𝐶 ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶 ) ) |
| 13 |
10 12
|
bitri |
⊢ ( ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ⊆ 𝐶 ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶 ) ) |
| 14 |
13
|
biimpri |
⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶 ) → ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ⊆ 𝐶 ) |
| 15 |
14
|
adantl |
⊢ ( ( ( 𝐶 ∈ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶 ) ) → ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ⊆ 𝐶 ) |
| 16 |
9 15
|
eqssd |
⊢ ( ( ( 𝐶 ∈ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶 ) ) → 𝐶 = ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ) |
| 17 |
16
|
expl |
⊢ ( 𝐶 ∈ 𝐵 → ( ( 𝐶 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶 ) ) → 𝐶 = ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ) ) |
| 18 |
|
unilbss |
⊢ ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ⊆ 𝐴 |
| 19 |
|
sseq1 |
⊢ ( 𝐶 = ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } → ( 𝐶 ⊆ 𝐴 ↔ ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ⊆ 𝐴 ) ) |
| 20 |
18 19
|
mpbiri |
⊢ ( 𝐶 = ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } → 𝐶 ⊆ 𝐴 ) |
| 21 |
|
eqimss2 |
⊢ ( 𝐶 = ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } → ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ⊆ 𝐶 ) |
| 22 |
21 13
|
sylib |
⊢ ( 𝐶 = ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } → ∀ 𝑦 ∈ 𝐵 ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶 ) ) |
| 23 |
20 22
|
jca |
⊢ ( 𝐶 = ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } → ( 𝐶 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶 ) ) ) |
| 24 |
17 23
|
impbid1 |
⊢ ( 𝐶 ∈ 𝐵 → ( ( 𝐶 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶 ) ) ↔ 𝐶 = ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ) ) |