| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ipolub.i |
⊢ 𝐼 = ( toInc ‘ 𝐹 ) |
| 2 |
|
ipolub.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
| 3 |
|
ipolub.s |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐹 ) |
| 4 |
|
ipoglblem.l |
⊢ ≤ = ( le ‘ 𝐼 ) |
| 5 |
|
ssint |
⊢ ( 𝑋 ⊆ ∩ 𝑆 ↔ ∀ 𝑦 ∈ 𝑆 𝑋 ⊆ 𝑦 ) |
| 6 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) ∧ 𝑦 ∈ 𝑆 ) → 𝐹 ∈ 𝑉 ) |
| 7 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑋 ∈ 𝐹 ) |
| 8 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑆 ⊆ 𝐹 ) |
| 9 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝑆 ) |
| 10 |
8 9
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝐹 ) |
| 11 |
1 4
|
ipole |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) → ( 𝑋 ≤ 𝑦 ↔ 𝑋 ⊆ 𝑦 ) ) |
| 12 |
6 7 10 11
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑋 ≤ 𝑦 ↔ 𝑋 ⊆ 𝑦 ) ) |
| 13 |
12
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) → ( ∀ 𝑦 ∈ 𝑆 𝑋 ≤ 𝑦 ↔ ∀ 𝑦 ∈ 𝑆 𝑋 ⊆ 𝑦 ) ) |
| 14 |
5 13
|
bitr4id |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) → ( 𝑋 ⊆ ∩ 𝑆 ↔ ∀ 𝑦 ∈ 𝑆 𝑋 ≤ 𝑦 ) ) |
| 15 |
|
ssint |
⊢ ( 𝑧 ⊆ ∩ 𝑆 ↔ ∀ 𝑦 ∈ 𝑆 𝑧 ⊆ 𝑦 ) |
| 16 |
6
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) ∧ 𝑧 ∈ 𝐹 ) ∧ 𝑦 ∈ 𝑆 ) → 𝐹 ∈ 𝑉 ) |
| 17 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) ∧ 𝑧 ∈ 𝐹 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑧 ∈ 𝐹 ) |
| 18 |
10
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) ∧ 𝑧 ∈ 𝐹 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝐹 ) |
| 19 |
1 4
|
ipole |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑧 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) → ( 𝑧 ≤ 𝑦 ↔ 𝑧 ⊆ 𝑦 ) ) |
| 20 |
16 17 18 19
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) ∧ 𝑧 ∈ 𝐹 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑧 ≤ 𝑦 ↔ 𝑧 ⊆ 𝑦 ) ) |
| 21 |
20
|
ralbidva |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) ∧ 𝑧 ∈ 𝐹 ) → ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 ↔ ∀ 𝑦 ∈ 𝑆 𝑧 ⊆ 𝑦 ) ) |
| 22 |
15 21
|
bitr4id |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) ∧ 𝑧 ∈ 𝐹 ) → ( 𝑧 ⊆ ∩ 𝑆 ↔ ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 ) ) |
| 23 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) ∧ 𝑧 ∈ 𝐹 ) → 𝐹 ∈ 𝑉 ) |
| 24 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) ∧ 𝑧 ∈ 𝐹 ) → 𝑧 ∈ 𝐹 ) |
| 25 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) ∧ 𝑧 ∈ 𝐹 ) → 𝑋 ∈ 𝐹 ) |
| 26 |
1 4
|
ipole |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑧 ∈ 𝐹 ∧ 𝑋 ∈ 𝐹 ) → ( 𝑧 ≤ 𝑋 ↔ 𝑧 ⊆ 𝑋 ) ) |
| 27 |
23 24 25 26
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) ∧ 𝑧 ∈ 𝐹 ) → ( 𝑧 ≤ 𝑋 ↔ 𝑧 ⊆ 𝑋 ) ) |
| 28 |
27
|
bicomd |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) ∧ 𝑧 ∈ 𝐹 ) → ( 𝑧 ⊆ 𝑋 ↔ 𝑧 ≤ 𝑋 ) ) |
| 29 |
22 28
|
imbi12d |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) ∧ 𝑧 ∈ 𝐹 ) → ( ( 𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑋 ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑋 ) ) ) |
| 30 |
29
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) → ( ∀ 𝑧 ∈ 𝐹 ( 𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑋 ) ↔ ∀ 𝑧 ∈ 𝐹 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑋 ) ) ) |
| 31 |
14 30
|
anbi12d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) → ( ( 𝑋 ⊆ ∩ 𝑆 ∧ ∀ 𝑧 ∈ 𝐹 ( 𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑋 ) ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑋 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐹 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑋 ) ) ) ) |