| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ipolub.i |
|
| 2 |
|
ipolub.f |
|
| 3 |
|
ipolub.s |
|
| 4 |
|
ipoglblem.l |
|
| 5 |
|
ssint |
|
| 6 |
2
|
ad2antrr |
|
| 7 |
|
simplr |
|
| 8 |
3
|
ad2antrr |
|
| 9 |
|
simpr |
|
| 10 |
8 9
|
sseldd |
|
| 11 |
1 4
|
ipole |
|
| 12 |
6 7 10 11
|
syl3anc |
|
| 13 |
12
|
ralbidva |
|
| 14 |
5 13
|
bitr4id |
|
| 15 |
|
ssint |
|
| 16 |
6
|
adantlr |
|
| 17 |
|
simplr |
|
| 18 |
10
|
adantlr |
|
| 19 |
1 4
|
ipole |
|
| 20 |
16 17 18 19
|
syl3anc |
|
| 21 |
20
|
ralbidva |
|
| 22 |
15 21
|
bitr4id |
|
| 23 |
2
|
ad2antrr |
|
| 24 |
|
simpr |
|
| 25 |
|
simplr |
|
| 26 |
1 4
|
ipole |
|
| 27 |
23 24 25 26
|
syl3anc |
|
| 28 |
27
|
bicomd |
|
| 29 |
22 28
|
imbi12d |
|
| 30 |
29
|
ralbidva |
|
| 31 |
14 30
|
anbi12d |
|