Metamath Proof Explorer


Theorem ipoglb

Description: The GLB of the inclusion poset. (hypotheses "ipolub.s" and "ipoglb.t" could be eliminated with S e. dom G .) Could be significantly shortened if posglbd is in quantified form. mrelatglb could potentially be shortened using this. See mrelatglbALT . (Contributed by Zhi Wang, 29-Sep-2024)

Ref Expression
Hypotheses ipolub.i 𝐼 = ( toInc ‘ 𝐹 )
ipolub.f ( 𝜑𝐹𝑉 )
ipolub.s ( 𝜑𝑆𝐹 )
ipoglb.g ( 𝜑𝐺 = ( glb ‘ 𝐼 ) )
ipoglbdm.t ( 𝜑𝑇 = { 𝑥𝐹𝑥 𝑆 } )
ipoglb.t ( 𝜑𝑇𝐹 )
Assertion ipoglb ( 𝜑 → ( 𝐺𝑆 ) = 𝑇 )

Proof

Step Hyp Ref Expression
1 ipolub.i 𝐼 = ( toInc ‘ 𝐹 )
2 ipolub.f ( 𝜑𝐹𝑉 )
3 ipolub.s ( 𝜑𝑆𝐹 )
4 ipoglb.g ( 𝜑𝐺 = ( glb ‘ 𝐼 ) )
5 ipoglbdm.t ( 𝜑𝑇 = { 𝑥𝐹𝑥 𝑆 } )
6 ipoglb.t ( 𝜑𝑇𝐹 )
7 eqid ( le ‘ 𝐼 ) = ( le ‘ 𝐼 )
8 1 ipobas ( 𝐹𝑉𝐹 = ( Base ‘ 𝐼 ) )
9 2 8 syl ( 𝜑𝐹 = ( Base ‘ 𝐼 ) )
10 1 ipopos 𝐼 ∈ Poset
11 10 a1i ( 𝜑𝐼 ∈ Poset )
12 breq2 ( 𝑦 = 𝑣 → ( 𝑇 ( le ‘ 𝐼 ) 𝑦𝑇 ( le ‘ 𝐼 ) 𝑣 ) )
13 unilbeu ( 𝑇𝐹 → ( ( 𝑇 𝑆 ∧ ∀ 𝑧𝐹 ( 𝑧 𝑆𝑧𝑇 ) ) ↔ 𝑇 = { 𝑥𝐹𝑥 𝑆 } ) )
14 13 biimpar ( ( 𝑇𝐹𝑇 = { 𝑥𝐹𝑥 𝑆 } ) → ( 𝑇 𝑆 ∧ ∀ 𝑧𝐹 ( 𝑧 𝑆𝑧𝑇 ) ) )
15 6 5 14 syl2anc ( 𝜑 → ( 𝑇 𝑆 ∧ ∀ 𝑧𝐹 ( 𝑧 𝑆𝑧𝑇 ) ) )
16 1 2 3 7 ipoglblem ( ( 𝜑𝑇𝐹 ) → ( ( 𝑇 𝑆 ∧ ∀ 𝑧𝐹 ( 𝑧 𝑆𝑧𝑇 ) ) ↔ ( ∀ 𝑦𝑆 𝑇 ( le ‘ 𝐼 ) 𝑦 ∧ ∀ 𝑧𝐹 ( ∀ 𝑦𝑆 𝑧 ( le ‘ 𝐼 ) 𝑦𝑧 ( le ‘ 𝐼 ) 𝑇 ) ) ) )
17 6 16 mpdan ( 𝜑 → ( ( 𝑇 𝑆 ∧ ∀ 𝑧𝐹 ( 𝑧 𝑆𝑧𝑇 ) ) ↔ ( ∀ 𝑦𝑆 𝑇 ( le ‘ 𝐼 ) 𝑦 ∧ ∀ 𝑧𝐹 ( ∀ 𝑦𝑆 𝑧 ( le ‘ 𝐼 ) 𝑦𝑧 ( le ‘ 𝐼 ) 𝑇 ) ) ) )
18 15 17 mpbid ( 𝜑 → ( ∀ 𝑦𝑆 𝑇 ( le ‘ 𝐼 ) 𝑦 ∧ ∀ 𝑧𝐹 ( ∀ 𝑦𝑆 𝑧 ( le ‘ 𝐼 ) 𝑦𝑧 ( le ‘ 𝐼 ) 𝑇 ) ) )
19 18 simpld ( 𝜑 → ∀ 𝑦𝑆 𝑇 ( le ‘ 𝐼 ) 𝑦 )
20 19 adantr ( ( 𝜑𝑣𝑆 ) → ∀ 𝑦𝑆 𝑇 ( le ‘ 𝐼 ) 𝑦 )
21 simpr ( ( 𝜑𝑣𝑆 ) → 𝑣𝑆 )
22 12 20 21 rspcdva ( ( 𝜑𝑣𝑆 ) → 𝑇 ( le ‘ 𝐼 ) 𝑣 )
23 breq1 ( 𝑧 = 𝑤 → ( 𝑧 ( le ‘ 𝐼 ) 𝑦𝑤 ( le ‘ 𝐼 ) 𝑦 ) )
24 23 ralbidv ( 𝑧 = 𝑤 → ( ∀ 𝑦𝑆 𝑧 ( le ‘ 𝐼 ) 𝑦 ↔ ∀ 𝑦𝑆 𝑤 ( le ‘ 𝐼 ) 𝑦 ) )
25 breq2 ( 𝑦 = 𝑣 → ( 𝑤 ( le ‘ 𝐼 ) 𝑦𝑤 ( le ‘ 𝐼 ) 𝑣 ) )
26 25 cbvralvw ( ∀ 𝑦𝑆 𝑤 ( le ‘ 𝐼 ) 𝑦 ↔ ∀ 𝑣𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣 )
27 24 26 bitrdi ( 𝑧 = 𝑤 → ( ∀ 𝑦𝑆 𝑧 ( le ‘ 𝐼 ) 𝑦 ↔ ∀ 𝑣𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣 ) )
28 breq1 ( 𝑧 = 𝑤 → ( 𝑧 ( le ‘ 𝐼 ) 𝑇𝑤 ( le ‘ 𝐼 ) 𝑇 ) )
29 27 28 imbi12d ( 𝑧 = 𝑤 → ( ( ∀ 𝑦𝑆 𝑧 ( le ‘ 𝐼 ) 𝑦𝑧 ( le ‘ 𝐼 ) 𝑇 ) ↔ ( ∀ 𝑣𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣𝑤 ( le ‘ 𝐼 ) 𝑇 ) ) )
30 18 simprd ( 𝜑 → ∀ 𝑧𝐹 ( ∀ 𝑦𝑆 𝑧 ( le ‘ 𝐼 ) 𝑦𝑧 ( le ‘ 𝐼 ) 𝑇 ) )
31 30 adantr ( ( 𝜑𝑤𝐹 ) → ∀ 𝑧𝐹 ( ∀ 𝑦𝑆 𝑧 ( le ‘ 𝐼 ) 𝑦𝑧 ( le ‘ 𝐼 ) 𝑇 ) )
32 simpr ( ( 𝜑𝑤𝐹 ) → 𝑤𝐹 )
33 29 31 32 rspcdva ( ( 𝜑𝑤𝐹 ) → ( ∀ 𝑣𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣𝑤 ( le ‘ 𝐼 ) 𝑇 ) )
34 33 3impia ( ( 𝜑𝑤𝐹 ∧ ∀ 𝑣𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣 ) → 𝑤 ( le ‘ 𝐼 ) 𝑇 )
35 7 9 4 11 3 6 22 34 posglbd ( 𝜑 → ( 𝐺𝑆 ) = 𝑇 )