| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ipolub.i |
⊢ 𝐼 = ( toInc ‘ 𝐹 ) |
| 2 |
|
ipolub.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
| 3 |
|
ipolub.s |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐹 ) |
| 4 |
|
ipoglb.g |
⊢ ( 𝜑 → 𝐺 = ( glb ‘ 𝐼 ) ) |
| 5 |
|
ipoglbdm.t |
⊢ ( 𝜑 → 𝑇 = ∪ { 𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆 } ) |
| 6 |
|
ipoglb.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝐹 ) |
| 7 |
|
eqid |
⊢ ( le ‘ 𝐼 ) = ( le ‘ 𝐼 ) |
| 8 |
1
|
ipobas |
⊢ ( 𝐹 ∈ 𝑉 → 𝐹 = ( Base ‘ 𝐼 ) ) |
| 9 |
2 8
|
syl |
⊢ ( 𝜑 → 𝐹 = ( Base ‘ 𝐼 ) ) |
| 10 |
1
|
ipopos |
⊢ 𝐼 ∈ Poset |
| 11 |
10
|
a1i |
⊢ ( 𝜑 → 𝐼 ∈ Poset ) |
| 12 |
|
breq2 |
⊢ ( 𝑦 = 𝑣 → ( 𝑇 ( le ‘ 𝐼 ) 𝑦 ↔ 𝑇 ( le ‘ 𝐼 ) 𝑣 ) ) |
| 13 |
|
unilbeu |
⊢ ( 𝑇 ∈ 𝐹 → ( ( 𝑇 ⊆ ∩ 𝑆 ∧ ∀ 𝑧 ∈ 𝐹 ( 𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇 ) ) ↔ 𝑇 = ∪ { 𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆 } ) ) |
| 14 |
13
|
biimpar |
⊢ ( ( 𝑇 ∈ 𝐹 ∧ 𝑇 = ∪ { 𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆 } ) → ( 𝑇 ⊆ ∩ 𝑆 ∧ ∀ 𝑧 ∈ 𝐹 ( 𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇 ) ) ) |
| 15 |
6 5 14
|
syl2anc |
⊢ ( 𝜑 → ( 𝑇 ⊆ ∩ 𝑆 ∧ ∀ 𝑧 ∈ 𝐹 ( 𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇 ) ) ) |
| 16 |
1 2 3 7
|
ipoglblem |
⊢ ( ( 𝜑 ∧ 𝑇 ∈ 𝐹 ) → ( ( 𝑇 ⊆ ∩ 𝑆 ∧ ∀ 𝑧 ∈ 𝐹 ( 𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇 ) ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑇 ( le ‘ 𝐼 ) 𝑦 ∧ ∀ 𝑧 ∈ 𝐹 ( ∀ 𝑦 ∈ 𝑆 𝑧 ( le ‘ 𝐼 ) 𝑦 → 𝑧 ( le ‘ 𝐼 ) 𝑇 ) ) ) ) |
| 17 |
6 16
|
mpdan |
⊢ ( 𝜑 → ( ( 𝑇 ⊆ ∩ 𝑆 ∧ ∀ 𝑧 ∈ 𝐹 ( 𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇 ) ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑇 ( le ‘ 𝐼 ) 𝑦 ∧ ∀ 𝑧 ∈ 𝐹 ( ∀ 𝑦 ∈ 𝑆 𝑧 ( le ‘ 𝐼 ) 𝑦 → 𝑧 ( le ‘ 𝐼 ) 𝑇 ) ) ) ) |
| 18 |
15 17
|
mpbid |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝑆 𝑇 ( le ‘ 𝐼 ) 𝑦 ∧ ∀ 𝑧 ∈ 𝐹 ( ∀ 𝑦 ∈ 𝑆 𝑧 ( le ‘ 𝐼 ) 𝑦 → 𝑧 ( le ‘ 𝐼 ) 𝑇 ) ) ) |
| 19 |
18
|
simpld |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑆 𝑇 ( le ‘ 𝐼 ) 𝑦 ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑆 ) → ∀ 𝑦 ∈ 𝑆 𝑇 ( le ‘ 𝐼 ) 𝑦 ) |
| 21 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑆 ) → 𝑣 ∈ 𝑆 ) |
| 22 |
12 20 21
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑆 ) → 𝑇 ( le ‘ 𝐼 ) 𝑣 ) |
| 23 |
|
breq1 |
⊢ ( 𝑧 = 𝑤 → ( 𝑧 ( le ‘ 𝐼 ) 𝑦 ↔ 𝑤 ( le ‘ 𝐼 ) 𝑦 ) ) |
| 24 |
23
|
ralbidv |
⊢ ( 𝑧 = 𝑤 → ( ∀ 𝑦 ∈ 𝑆 𝑧 ( le ‘ 𝐼 ) 𝑦 ↔ ∀ 𝑦 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑦 ) ) |
| 25 |
|
breq2 |
⊢ ( 𝑦 = 𝑣 → ( 𝑤 ( le ‘ 𝐼 ) 𝑦 ↔ 𝑤 ( le ‘ 𝐼 ) 𝑣 ) ) |
| 26 |
25
|
cbvralvw |
⊢ ( ∀ 𝑦 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑦 ↔ ∀ 𝑣 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣 ) |
| 27 |
24 26
|
bitrdi |
⊢ ( 𝑧 = 𝑤 → ( ∀ 𝑦 ∈ 𝑆 𝑧 ( le ‘ 𝐼 ) 𝑦 ↔ ∀ 𝑣 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣 ) ) |
| 28 |
|
breq1 |
⊢ ( 𝑧 = 𝑤 → ( 𝑧 ( le ‘ 𝐼 ) 𝑇 ↔ 𝑤 ( le ‘ 𝐼 ) 𝑇 ) ) |
| 29 |
27 28
|
imbi12d |
⊢ ( 𝑧 = 𝑤 → ( ( ∀ 𝑦 ∈ 𝑆 𝑧 ( le ‘ 𝐼 ) 𝑦 → 𝑧 ( le ‘ 𝐼 ) 𝑇 ) ↔ ( ∀ 𝑣 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣 → 𝑤 ( le ‘ 𝐼 ) 𝑇 ) ) ) |
| 30 |
18
|
simprd |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐹 ( ∀ 𝑦 ∈ 𝑆 𝑧 ( le ‘ 𝐼 ) 𝑦 → 𝑧 ( le ‘ 𝐼 ) 𝑇 ) ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐹 ) → ∀ 𝑧 ∈ 𝐹 ( ∀ 𝑦 ∈ 𝑆 𝑧 ( le ‘ 𝐼 ) 𝑦 → 𝑧 ( le ‘ 𝐼 ) 𝑇 ) ) |
| 32 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐹 ) → 𝑤 ∈ 𝐹 ) |
| 33 |
29 31 32
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐹 ) → ( ∀ 𝑣 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣 → 𝑤 ( le ‘ 𝐼 ) 𝑇 ) ) |
| 34 |
33
|
3impia |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐹 ∧ ∀ 𝑣 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣 ) → 𝑤 ( le ‘ 𝐼 ) 𝑇 ) |
| 35 |
7 9 4 11 3 6 22 34
|
posglbdg |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑆 ) = 𝑇 ) |