| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ipolub.i |
|- I = ( toInc ` F ) |
| 2 |
|
ipolub.f |
|- ( ph -> F e. V ) |
| 3 |
|
ipolub.s |
|- ( ph -> S C_ F ) |
| 4 |
|
ipoglb.g |
|- ( ph -> G = ( glb ` I ) ) |
| 5 |
|
ipoglbdm.t |
|- ( ph -> T = U. { x e. F | x C_ |^| S } ) |
| 6 |
1
|
ipobas |
|- ( F e. V -> F = ( Base ` I ) ) |
| 7 |
2 6
|
syl |
|- ( ph -> F = ( Base ` I ) ) |
| 8 |
|
eqidd |
|- ( ph -> ( le ` I ) = ( le ` I ) ) |
| 9 |
|
eqid |
|- ( le ` I ) = ( le ` I ) |
| 10 |
1 2 3 9
|
ipoglblem |
|- ( ( ph /\ w e. F ) -> ( ( w C_ |^| S /\ A. z e. F ( z C_ |^| S -> z C_ w ) ) <-> ( A. y e. S w ( le ` I ) y /\ A. z e. F ( A. y e. S z ( le ` I ) y -> z ( le ` I ) w ) ) ) ) |
| 11 |
1
|
ipopos |
|- I e. Poset |
| 12 |
11
|
a1i |
|- ( ph -> I e. Poset ) |
| 13 |
7 8 4 10 12
|
glbeldm2d |
|- ( ph -> ( S e. dom G <-> ( S C_ F /\ E. w e. F ( w C_ |^| S /\ A. z e. F ( z C_ |^| S -> z C_ w ) ) ) ) ) |
| 14 |
3 13
|
mpbirand |
|- ( ph -> ( S e. dom G <-> E. w e. F ( w C_ |^| S /\ A. z e. F ( z C_ |^| S -> z C_ w ) ) ) ) |
| 15 |
5
|
ad2antrr |
|- ( ( ( ph /\ w e. F ) /\ ( w C_ |^| S /\ A. z e. F ( z C_ |^| S -> z C_ w ) ) ) -> T = U. { x e. F | x C_ |^| S } ) |
| 16 |
|
unilbeu |
|- ( w e. F -> ( ( w C_ |^| S /\ A. z e. F ( z C_ |^| S -> z C_ w ) ) <-> w = U. { x e. F | x C_ |^| S } ) ) |
| 17 |
16
|
biimpa |
|- ( ( w e. F /\ ( w C_ |^| S /\ A. z e. F ( z C_ |^| S -> z C_ w ) ) ) -> w = U. { x e. F | x C_ |^| S } ) |
| 18 |
17
|
adantll |
|- ( ( ( ph /\ w e. F ) /\ ( w C_ |^| S /\ A. z e. F ( z C_ |^| S -> z C_ w ) ) ) -> w = U. { x e. F | x C_ |^| S } ) |
| 19 |
15 18
|
eqtr4d |
|- ( ( ( ph /\ w e. F ) /\ ( w C_ |^| S /\ A. z e. F ( z C_ |^| S -> z C_ w ) ) ) -> T = w ) |
| 20 |
|
simplr |
|- ( ( ( ph /\ w e. F ) /\ ( w C_ |^| S /\ A. z e. F ( z C_ |^| S -> z C_ w ) ) ) -> w e. F ) |
| 21 |
19 20
|
eqeltrd |
|- ( ( ( ph /\ w e. F ) /\ ( w C_ |^| S /\ A. z e. F ( z C_ |^| S -> z C_ w ) ) ) -> T e. F ) |
| 22 |
21
|
ex |
|- ( ( ph /\ w e. F ) -> ( ( w C_ |^| S /\ A. z e. F ( z C_ |^| S -> z C_ w ) ) -> T e. F ) ) |
| 23 |
|
simpr |
|- ( ( ph /\ T e. F ) -> T e. F ) |
| 24 |
|
unilbeu |
|- ( T e. F -> ( ( T C_ |^| S /\ A. z e. F ( z C_ |^| S -> z C_ T ) ) <-> T = U. { x e. F | x C_ |^| S } ) ) |
| 25 |
24
|
biimparc |
|- ( ( T = U. { x e. F | x C_ |^| S } /\ T e. F ) -> ( T C_ |^| S /\ A. z e. F ( z C_ |^| S -> z C_ T ) ) ) |
| 26 |
5 25
|
sylan |
|- ( ( ph /\ T e. F ) -> ( T C_ |^| S /\ A. z e. F ( z C_ |^| S -> z C_ T ) ) ) |
| 27 |
|
sseq1 |
|- ( w = T -> ( w C_ |^| S <-> T C_ |^| S ) ) |
| 28 |
|
sseq2 |
|- ( w = T -> ( z C_ w <-> z C_ T ) ) |
| 29 |
28
|
imbi2d |
|- ( w = T -> ( ( z C_ |^| S -> z C_ w ) <-> ( z C_ |^| S -> z C_ T ) ) ) |
| 30 |
29
|
ralbidv |
|- ( w = T -> ( A. z e. F ( z C_ |^| S -> z C_ w ) <-> A. z e. F ( z C_ |^| S -> z C_ T ) ) ) |
| 31 |
27 30
|
anbi12d |
|- ( w = T -> ( ( w C_ |^| S /\ A. z e. F ( z C_ |^| S -> z C_ w ) ) <-> ( T C_ |^| S /\ A. z e. F ( z C_ |^| S -> z C_ T ) ) ) ) |
| 32 |
22 23 26 31
|
rspceb2dv |
|- ( ph -> ( E. w e. F ( w C_ |^| S /\ A. z e. F ( z C_ |^| S -> z C_ w ) ) <-> T e. F ) ) |
| 33 |
14 32
|
bitrd |
|- ( ph -> ( S e. dom G <-> T e. F ) ) |