| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mreclatGOOD.i |
|- I = ( toInc ` C ) |
| 2 |
1
|
ipobas |
|- ( C e. ( Moore ` X ) -> C = ( Base ` I ) ) |
| 3 |
|
eqidd |
|- ( C e. ( Moore ` X ) -> ( lub ` I ) = ( lub ` I ) ) |
| 4 |
|
eqidd |
|- ( C e. ( Moore ` X ) -> ( glb ` I ) = ( glb ` I ) ) |
| 5 |
1
|
ipopos |
|- I e. Poset |
| 6 |
5
|
a1i |
|- ( C e. ( Moore ` X ) -> I e. Poset ) |
| 7 |
|
mreuniss |
|- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> U. x C_ X ) |
| 8 |
|
eqid |
|- ( mrCls ` C ) = ( mrCls ` C ) |
| 9 |
8
|
mrccl |
|- ( ( C e. ( Moore ` X ) /\ U. x C_ X ) -> ( ( mrCls ` C ) ` U. x ) e. C ) |
| 10 |
7 9
|
syldan |
|- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> ( ( mrCls ` C ) ` U. x ) e. C ) |
| 11 |
|
simpl |
|- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> C e. ( Moore ` X ) ) |
| 12 |
|
simpr |
|- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> x C_ C ) |
| 13 |
|
eqidd |
|- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> ( lub ` I ) = ( lub ` I ) ) |
| 14 |
8
|
mrcval |
|- ( ( C e. ( Moore ` X ) /\ U. x C_ X ) -> ( ( mrCls ` C ) ` U. x ) = |^| { y e. C | U. x C_ y } ) |
| 15 |
7 14
|
syldan |
|- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> ( ( mrCls ` C ) ` U. x ) = |^| { y e. C | U. x C_ y } ) |
| 16 |
1 11 12 13 15
|
ipolubdm |
|- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> ( x e. dom ( lub ` I ) <-> ( ( mrCls ` C ) ` U. x ) e. C ) ) |
| 17 |
10 16
|
mpbird |
|- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> x e. dom ( lub ` I ) ) |
| 18 |
|
ssv |
|- y C_ _V |
| 19 |
|
int0 |
|- |^| (/) = _V |
| 20 |
18 19
|
sseqtrri |
|- y C_ |^| (/) |
| 21 |
|
simplr |
|- ( ( ( ( C e. ( Moore ` X ) /\ x C_ C ) /\ x = (/) ) /\ y e. C ) -> x = (/) ) |
| 22 |
21
|
inteqd |
|- ( ( ( ( C e. ( Moore ` X ) /\ x C_ C ) /\ x = (/) ) /\ y e. C ) -> |^| x = |^| (/) ) |
| 23 |
20 22
|
sseqtrrid |
|- ( ( ( ( C e. ( Moore ` X ) /\ x C_ C ) /\ x = (/) ) /\ y e. C ) -> y C_ |^| x ) |
| 24 |
23
|
rabeqcda |
|- ( ( ( C e. ( Moore ` X ) /\ x C_ C ) /\ x = (/) ) -> { y e. C | y C_ |^| x } = C ) |
| 25 |
24
|
unieqd |
|- ( ( ( C e. ( Moore ` X ) /\ x C_ C ) /\ x = (/) ) -> U. { y e. C | y C_ |^| x } = U. C ) |
| 26 |
|
mreuni |
|- ( C e. ( Moore ` X ) -> U. C = X ) |
| 27 |
|
mre1cl |
|- ( C e. ( Moore ` X ) -> X e. C ) |
| 28 |
26 27
|
eqeltrd |
|- ( C e. ( Moore ` X ) -> U. C e. C ) |
| 29 |
28
|
ad2antrr |
|- ( ( ( C e. ( Moore ` X ) /\ x C_ C ) /\ x = (/) ) -> U. C e. C ) |
| 30 |
25 29
|
eqeltrd |
|- ( ( ( C e. ( Moore ` X ) /\ x C_ C ) /\ x = (/) ) -> U. { y e. C | y C_ |^| x } e. C ) |
| 31 |
|
mreintcl |
|- ( ( C e. ( Moore ` X ) /\ x C_ C /\ x =/= (/) ) -> |^| x e. C ) |
| 32 |
|
unimax |
|- ( |^| x e. C -> U. { y e. C | y C_ |^| x } = |^| x ) |
| 33 |
31 32
|
syl |
|- ( ( C e. ( Moore ` X ) /\ x C_ C /\ x =/= (/) ) -> U. { y e. C | y C_ |^| x } = |^| x ) |
| 34 |
33 31
|
eqeltrd |
|- ( ( C e. ( Moore ` X ) /\ x C_ C /\ x =/= (/) ) -> U. { y e. C | y C_ |^| x } e. C ) |
| 35 |
34
|
3expa |
|- ( ( ( C e. ( Moore ` X ) /\ x C_ C ) /\ x =/= (/) ) -> U. { y e. C | y C_ |^| x } e. C ) |
| 36 |
30 35
|
pm2.61dane |
|- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> U. { y e. C | y C_ |^| x } e. C ) |
| 37 |
|
eqidd |
|- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> ( glb ` I ) = ( glb ` I ) ) |
| 38 |
|
eqidd |
|- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> U. { y e. C | y C_ |^| x } = U. { y e. C | y C_ |^| x } ) |
| 39 |
1 11 12 37 38
|
ipoglbdm |
|- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> ( x e. dom ( glb ` I ) <-> U. { y e. C | y C_ |^| x } e. C ) ) |
| 40 |
36 39
|
mpbird |
|- ( ( C e. ( Moore ` X ) /\ x C_ C ) -> x e. dom ( glb ` I ) ) |
| 41 |
2 3 4 6 17 40
|
isclatd |
|- ( C e. ( Moore ` X ) -> I e. CLat ) |