| Step |
Hyp |
Ref |
Expression |
| 1 |
|
topclat.i |
⊢ 𝐼 = ( toInc ‘ 𝐽 ) |
| 2 |
1
|
ipobas |
⊢ ( 𝐽 ∈ Top → 𝐽 = ( Base ‘ 𝐼 ) ) |
| 3 |
|
eqidd |
⊢ ( 𝐽 ∈ Top → ( lub ‘ 𝐼 ) = ( lub ‘ 𝐼 ) ) |
| 4 |
|
eqidd |
⊢ ( 𝐽 ∈ Top → ( glb ‘ 𝐼 ) = ( glb ‘ 𝐼 ) ) |
| 5 |
1
|
ipopos |
⊢ 𝐼 ∈ Poset |
| 6 |
5
|
a1i |
⊢ ( 𝐽 ∈ Top → 𝐼 ∈ Poset ) |
| 7 |
|
uniopn |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽 ) → ∪ 𝑥 ∈ 𝐽 ) |
| 8 |
|
simpl |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽 ) → 𝐽 ∈ Top ) |
| 9 |
|
simpr |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽 ) → 𝑥 ⊆ 𝐽 ) |
| 10 |
|
eqidd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽 ) → ( lub ‘ 𝐼 ) = ( lub ‘ 𝐼 ) ) |
| 11 |
|
intmin |
⊢ ( ∪ 𝑥 ∈ 𝐽 → ∩ { 𝑦 ∈ 𝐽 ∣ ∪ 𝑥 ⊆ 𝑦 } = ∪ 𝑥 ) |
| 12 |
11
|
eqcomd |
⊢ ( ∪ 𝑥 ∈ 𝐽 → ∪ 𝑥 = ∩ { 𝑦 ∈ 𝐽 ∣ ∪ 𝑥 ⊆ 𝑦 } ) |
| 13 |
7 12
|
syl |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽 ) → ∪ 𝑥 = ∩ { 𝑦 ∈ 𝐽 ∣ ∪ 𝑥 ⊆ 𝑦 } ) |
| 14 |
1 8 9 10 13
|
ipolubdm |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽 ) → ( 𝑥 ∈ dom ( lub ‘ 𝐼 ) ↔ ∪ 𝑥 ∈ 𝐽 ) ) |
| 15 |
7 14
|
mpbird |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽 ) → 𝑥 ∈ dom ( lub ‘ 𝐼 ) ) |
| 16 |
|
ssrab2 |
⊢ { 𝑦 ∈ 𝐽 ∣ 𝑦 ⊆ ∩ 𝑥 } ⊆ 𝐽 |
| 17 |
|
uniopn |
⊢ ( ( 𝐽 ∈ Top ∧ { 𝑦 ∈ 𝐽 ∣ 𝑦 ⊆ ∩ 𝑥 } ⊆ 𝐽 ) → ∪ { 𝑦 ∈ 𝐽 ∣ 𝑦 ⊆ ∩ 𝑥 } ∈ 𝐽 ) |
| 18 |
8 16 17
|
sylancl |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽 ) → ∪ { 𝑦 ∈ 𝐽 ∣ 𝑦 ⊆ ∩ 𝑥 } ∈ 𝐽 ) |
| 19 |
|
eqidd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽 ) → ( glb ‘ 𝐼 ) = ( glb ‘ 𝐼 ) ) |
| 20 |
|
eqidd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽 ) → ∪ { 𝑦 ∈ 𝐽 ∣ 𝑦 ⊆ ∩ 𝑥 } = ∪ { 𝑦 ∈ 𝐽 ∣ 𝑦 ⊆ ∩ 𝑥 } ) |
| 21 |
1 8 9 19 20
|
ipoglbdm |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽 ) → ( 𝑥 ∈ dom ( glb ‘ 𝐼 ) ↔ ∪ { 𝑦 ∈ 𝐽 ∣ 𝑦 ⊆ ∩ 𝑥 } ∈ 𝐽 ) ) |
| 22 |
18 21
|
mpbird |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ⊆ 𝐽 ) → 𝑥 ∈ dom ( glb ‘ 𝐼 ) ) |
| 23 |
2 3 4 6 15 22
|
isclatd |
⊢ ( 𝐽 ∈ Top → 𝐼 ∈ CLat ) |