Description: A topology is a complete lattice under inclusion. (Contributed by Zhi Wang, 30-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | topclat.i | |
|
Assertion | topclat | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topclat.i | |
|
2 | 1 | ipobas | |
3 | eqidd | |
|
4 | eqidd | |
|
5 | 1 | ipopos | |
6 | 5 | a1i | |
7 | uniopn | |
|
8 | simpl | |
|
9 | simpr | |
|
10 | eqidd | |
|
11 | intmin | |
|
12 | 11 | eqcomd | |
13 | 7 12 | syl | |
14 | 1 8 9 10 13 | ipolubdm | |
15 | 7 14 | mpbird | |
16 | ssrab2 | |
|
17 | uniopn | |
|
18 | 8 16 17 | sylancl | |
19 | eqidd | |
|
20 | eqidd | |
|
21 | 1 8 9 19 20 | ipoglbdm | |
22 | 18 21 | mpbird | |
23 | 2 3 4 6 15 22 | isclatd | |