Metamath Proof Explorer


Theorem topclat

Description: A topology is a complete lattice under inclusion. (Contributed by Zhi Wang, 30-Sep-2024)

Ref Expression
Hypothesis topclat.i I=toIncJ
Assertion topclat JTopICLat

Proof

Step Hyp Ref Expression
1 topclat.i I=toIncJ
2 1 ipobas JTopJ=BaseI
3 eqidd JToplubI=lubI
4 eqidd JTopglbI=glbI
5 1 ipopos IPoset
6 5 a1i JTopIPoset
7 uniopn JTopxJxJ
8 simpl JTopxJJTop
9 simpr JTopxJxJ
10 eqidd JTopxJlubI=lubI
11 intmin xJyJ|xy=x
12 11 eqcomd xJx=yJ|xy
13 7 12 syl JTopxJx=yJ|xy
14 1 8 9 10 13 ipolubdm JTopxJxdomlubIxJ
15 7 14 mpbird JTopxJxdomlubI
16 ssrab2 yJ|yxJ
17 uniopn JTopyJ|yxJyJ|yxJ
18 8 16 17 sylancl JTopxJyJ|yxJ
19 eqidd JTopxJglbI=glbI
20 eqidd JTopxJyJ|yx=yJ|yx
21 1 8 9 19 20 ipoglbdm JTopxJxdomglbIyJ|yxJ
22 18 21 mpbird JTopxJxdomglbI
23 2 3 4 6 15 22 isclatd JTopICLat