Metamath Proof Explorer


Theorem ipolubdm

Description: The domain of the LUB of the inclusion poset. (Contributed by Zhi Wang, 28-Sep-2024)

Ref Expression
Hypotheses ipolub.i I = toInc F
ipolub.f φ F V
ipolub.s φ S F
ipolub.u φ U = lub I
ipolubdm.t φ T = x F | S x
Assertion ipolubdm φ S dom U T F

Proof

Step Hyp Ref Expression
1 ipolub.i I = toInc F
2 ipolub.f φ F V
3 ipolub.s φ S F
4 ipolub.u φ U = lub I
5 ipolubdm.t φ T = x F | S x
6 1 ipobas F V F = Base I
7 2 6 syl φ F = Base I
8 eqidd φ I = I
9 eqid I = I
10 1 2 3 9 ipolublem φ t F S t z F S z t z y S y I t z F y S y I z t I z
11 1 ipopos I Poset
12 11 a1i φ I Poset
13 7 8 4 10 12 lubeldm2d φ S dom U S F t F S t z F S z t z
14 3 13 mpbirand φ S dom U t F S t z F S z t z
15 5 ad2antrr φ t F S t z F S z t z T = x F | S x
16 intubeu t F S t z F S z t z t = x F | S x
17 16 biimpa t F S t z F S z t z t = x F | S x
18 17 adantll φ t F S t z F S z t z t = x F | S x
19 15 18 eqtr4d φ t F S t z F S z t z T = t
20 simplr φ t F S t z F S z t z t F
21 19 20 eqeltrd φ t F S t z F S z t z T F
22 21 ex φ t F S t z F S z t z T F
23 simpr φ T F T F
24 intubeu T F S T z F S z T z T = x F | S x
25 24 biimparc T = x F | S x T F S T z F S z T z
26 5 25 sylan φ T F S T z F S z T z
27 sseq2 t = T S t S T
28 sseq1 t = T t z T z
29 28 imbi2d t = T S z t z S z T z
30 29 ralbidv t = T z F S z t z z F S z T z
31 27 30 anbi12d t = T S t z F S z t z S T z F S z T z
32 22 23 26 31 rspceb2dv φ t F S t z F S z t z T F
33 14 32 bitrd φ S dom U T F