Description: The domain of the LUB of the inclusion poset. (Contributed by Zhi Wang, 28-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ipolub.i | |
|
ipolub.f | |
||
ipolub.s | |
||
ipolub.u | |
||
ipolubdm.t | |
||
Assertion | ipolubdm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ipolub.i | |
|
2 | ipolub.f | |
|
3 | ipolub.s | |
|
4 | ipolub.u | |
|
5 | ipolubdm.t | |
|
6 | 1 | ipobas | |
7 | 2 6 | syl | |
8 | eqidd | |
|
9 | eqid | |
|
10 | 1 2 3 9 | ipolublem | |
11 | 1 | ipopos | |
12 | 11 | a1i | |
13 | 7 8 4 10 12 | lubeldm2d | |
14 | 3 13 | mpbirand | |
15 | 5 | ad2antrr | |
16 | intubeu | |
|
17 | 16 | biimpa | |
18 | 17 | adantll | |
19 | 15 18 | eqtr4d | |
20 | simplr | |
|
21 | 19 20 | eqeltrd | |
22 | 21 | ex | |
23 | simpr | |
|
24 | intubeu | |
|
25 | 24 | biimparc | |
26 | 5 25 | sylan | |
27 | sseq2 | |
|
28 | sseq1 | |
|
29 | 28 | imbi2d | |
30 | 29 | ralbidv | |
31 | 27 30 | anbi12d | |
32 | 22 23 26 31 | rspceb2dv | |
33 | 14 32 | bitrd | |