Metamath Proof Explorer


Theorem intubeu

Description: Existential uniqueness of the least upper bound. (Contributed by Zhi Wang, 28-Sep-2024)

Ref Expression
Assertion intubeu CBACyBAyCyC=xB|Ax

Proof

Step Hyp Ref Expression
1 ssint CxB|AxyxB|AxCy
2 sseq2 x=yAxAy
3 2 ralrab yxB|AxCyyBAyCy
4 1 3 bitri CxB|AxyBAyCy
5 4 biimpri yBAyCyCxB|Ax
6 5 adantl CBACyBAyCyCxB|Ax
7 sseq2 z=CAzAC
8 simpll CBACyBAyCyCB
9 simplr CBACyBAyCyAC
10 7 8 9 elrabd CBACyBAyCyCzB|Az
11 sseq2 z=xAzAx
12 11 cbvrabv zB|Az=xB|Ax
13 10 12 eleqtrdi CBACyBAyCyCxB|Ax
14 intss1 CxB|AxxB|AxC
15 13 14 syl CBACyBAyCyxB|AxC
16 6 15 eqssd CBACyBAyCyC=xB|Ax
17 16 expl CBACyBAyCyC=xB|Ax
18 ssintub AxB|Ax
19 sseq2 C=xB|AxACAxB|Ax
20 18 19 mpbiri C=xB|AxAC
21 eqimss C=xB|AxCxB|Ax
22 21 4 sylib C=xB|AxyBAyCy
23 20 22 jca C=xB|AxACyBAyCy
24 17 23 impbid1 CBACyBAyCyC=xB|Ax